4P090

gauche 型-シアン酸エチルのマイクロ波スペクトル

(上智大・理工) 渡辺 弘之,久世 信彦, 酒泉 武志

【目的】不安定分子シアン酸エチル (CH₃CH₂-OCN)は時間が経つとイソシアン 酸エチル(CH₃CH₂-NCO)に異性化すること が知られている。OCN基とアルキル基を有す る分子はCH₃-OCN、CH₃-NCOが報告されて いる。CH₃CH₂-NCOの回転異性体はメチル基 とNCO基とが*cis*型のみが報告されている¹⁾。 CH₃CH₂-OCNについては、本研究室の牟礼²⁾ によって、マイクロ波による研究が行われ、

trans型の回転定数、双極子モーメント、振動励起状態、同位体置換種(CH₃CH₂-OC¹⁵N)の観測と、 N 原子の rs 座標から trans型 CH₃CH₂-OCN であると決定された。一方 Pasinazki らの赤外分光 による研究では、メチル基と-OCN 基とが gauche型と trans型をとっている、2 つの回転異性体 が報告されている³。本研究では、マイクロ波分光において未だ観測されていない gauche型のス ペクトルを観測し、振動基底状態の分子定数を決定すると共に、振動励起状態のスペクトルを観 測し、この分子の振動の知見を得ることを目的とした。

【実験】CH₃CH₂-OCN の生成は、 市販品の酸化水銀(HgO)と合成し たチオカルバミン酸エチルとを用 い、気相 固相反応で生成させた。 チオカルバミン酸エチルは、エタ ノール,水酸化ナトリウム水溶液, 二硫化炭素,クロロ酢酸ナトリウム 水溶液,アンモニア水を用い三段階

反応装置

で合成した。酸化水銀とチオカルバミン酸エチルの反応は、チオカルバミン酸エチルの融点が約 40 と低いので、サンプル管と酸化水銀の入ったストレート管をアルミ箔で覆い 10 分間約 36 で暖めた。オレンジ色であった酸化水銀が茶色になったところで、反応が十分に進んだと判断し た。まず、得られた生成物を直接四重極型質量分析計に導入し、イオン化電圧 11.0 eV で観測し、 m/z71(C3H5NO)、m/z56(C2H2NO)、m/z29(C2H5)を得た。ピーク m/z71 は上記反応を考慮すると CH3CH2-OCN が期待される。マイクロ波分光器は 100 kHz 矩形波-Stark 変調型分光器を使用し、 試料圧 0.04 –0.06 Torr、Stark 電圧 40 ~ 1000 V の条件下、周波数範囲 26.5 ~ 60.0 GHz のマイクロ波 スペクトルを室温で測定した。*ab initio* 分子軌道計算は、MP2/6-311+G(d,p)のレベルで行った。

- 1) T. Sakaizumi, et al., Bull. Chem. Soc. Jpn., 49, 2908-2912 (1976).
- 2) H. Mure et al., J. Mol. Spectrosc., 138, 375-382 (1989).
- 3) T. Pasinazki et al., J. Phys. Chem. A, 107, 1720-1726 (2003).

【結果と考察】

(1) gauche型の振動基底状態のスペクトル

最初に CH₃CH₂-OCN の *trans* 型のマイクロ波スペクトルを観測し、CH₃CH₂-OCN の生成を確認した後に、*gauche* 型の予測周波数周辺を測定した。その結果、約 6500 MHz の間隔で *K*-Structure と考えられる、*a* type-*R* branch の特徴を持つ吸収線が得られた。これらの吸収線群とその周波数の値から、回転量子数 *J*を算出した。Stark 挙動をもとに、 K_{-1} =0, 1, 2 の吸収線を帰属し、*K*-Structure の吸収線群を含めて計 44 本を帰属し、分子定数を決定した (Table 1)。その結果、 *I*の観測値が-14.798(2) u²となり、*trans* 型よりはるかに大きく、類似分子である *skew* 型 CH₃CH₂-NO⁴⁾の

- 15.461(17) u²、gauche型 CH₃CH₂-SCN⁵⁾の - 19.2295(17) u²と近い値をとっていた。

(2) gauche型の振動励起状態のスペクトル

gauche 型の振動励起状態のスペクトルは、基底状態の高周波数側に現れる trans 型と異なり、約200 MHz 低周波数側に観測された。また、振動励起状態のスペクトルパターンは cis 型の CH₃CH₂-NCO の振動励起状態のパターン(v が大きくなるに従い、低周波数側にシフトする)と類似 していた。遠心力歪定数 _{JK}の値が - 39.1(50)kHz と負であることも類似していた。

(3) 振動励起状態のスペクトルの振動モード

Pasinazki の振動計算によると *gauche* 型の振動数は 77 cm⁻¹ (C-O torsion)、188 cm⁻¹ (CCO bending 45%; OCN bending 25%; C-C torsion 23%)であるので、相対強度比から得られた振動数 104(33)cm⁻¹ の振動励起状態のスペクトルは、C-O torsion によるものであると考えられる。現在、CD₃CD₂-OCN のマイクロ波スペクトルを観測中である。

	gauche				trar	<i>trans</i> ^{f)}	
	v=0		v=1	v=2	v=	v=0	
	Obsd	Calcd ^{e)}	Obsd	Obsd	Obsd	Calcd	
A/MHz	$11858(2)^{a}$	11724.2	12048(4)	12225(4)	30055(94)	30305.1	
<i>B</i> /MHz	3549.60(4)	3510.99	3522.93(6)	3501.60(6)	2543.53(1)	2510.21	
C/MHz	2969.17(4)	2936.14	2957.17(6)	2947.70(6)	2419.67(1)	2387.97	
B+C/MHz	6518.77(8)	6447.13	6479.10(12)	6449.30(12)	4963.20(2)		
Δ_J/kHz	4.0(3)		5.6(4)	8.4(4)			
Δ_{JK}/kHz	-35.9(6)		-44.7(9)	-55.9(9)			
$\Delta I^{\rm b)}({\rm u}^{-2})$	-14.798(2)	-14.924	-14.500(4)	-14.218(4)	-6.64(5)	-6.37	
$\kappa^{c)}$	-0.86943(2)	-0.86917	-0.87554	-0.88059	-0.99104	-0.99124	
ω/cm^{-1}			104(33)	188(58)			
$N^{d)}$	44		41	43	20		

Table 1 Observed and calculated molecular constants

a():1σ

 $b \Delta I = I_c - I_b - I_a$

с $\kappa = (2B - A - C)/(A - C)$

d Number of fitting transitions

e Calculated by ab initio calculation at the MP2/6-311+G(d,p) level

f Ref.(2)

4) A. Peter Cox et al., J. Chem. Soc., 90, 2171-2182 (1994).

5) A. Bjorseth et al., J. Mol. Struct., 11, 15-23 (1972).