（愛媛大院理工 ${ }^{1} \cdot$ 阪府大院理 ${ }^{2} \cdot$ 大阪電通大工 ${ }^{3} \cdot$ JST－CREST 4 ）
辻 裕也 ${ }^{1}$ ，○保田三沙貴 ${ }^{1}$ ，宮本久一 ${ }^{1,4}$ ，藤原秀紀 ${ }^{2,4}$ ，杉本豊成 ${ }^{2,4}$ ，
藤原絵美子 2,3 ，青沼秀児 3 ，御崎洋二 ${ }^{1,4}$

【序】当研究室では，二分子のTTFが融合したBDT－TTPの合成に成功し，それを用 いた分子性導体の多くが対イオンの大きさや形状に関係なく二次元的な β 型配列を とるといった強い自己凝集能を有し，その結果，大部分の塩が低温まで金属的挙動を示すことを明らかにしている。様々なBDT－TTP誘導体についても分子構造－分子配列相関について検討してきたが，最近，メチルチオ基で置換したビス（メチルチオ）－TTP （BTM－TTP）が自己凝集能を示さず，八面体アニオンとの組み合わせにおいて，均一 に積層した β 型配列を有する金属および θ 型分子配列を有する半導体を与えること を見出している。一方，ビス（セレノメチル）－TTP（BSM－TTP）の SbF_{6} 塩は β＂構造を有することも明らかとなっている。今回，一連の八面体アニオンを用いたBSM－TTP塩について検討したところ， 2 種の PF_{6} 塩の単結晶が得られたので，それらの構造と導電性について報告する。

BDT－TTP

$X=S, B T M-T T P$
$\mathrm{X}=\mathrm{Se}, \mathrm{BSM}-\mathrm{TTP}$

【結果と考察】クロロベンゼン中， $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ を支持電解質として用いて電解を行う ことにより 2 種の結晶 $(\mathrm{BSM}-\mathrm{TTP})_{4}\left(\mathrm{PF}_{6}\right)_{3}(\mathrm{PhCl})_{2}$ ならびに $(\mathrm{BSM}-\mathrm{TTP})_{2} \mathrm{PF}_{6}$ を得た。
$(\mathrm{BSM}-\mathrm{TTP})_{4}\left(\mathrm{PF}_{6}\right)_{3}(\mathrm{PhCl})_{2}: ~ \mathrm{X}$ 線構造解析の結果からドナーとアニオンの組成比は $4: 3$ と考えられる。ドナー分子は Fig．1．のように分子短軸方向にスリップの小 さな face－to－face 型積層構造を形成している。また，アニオンと溶媒から成る絶縁層

Figure 1．Crystal structure of $(\mathrm{BSM}-\mathrm{TTP})_{4}\left(\mathrm{PF}_{6}\right)_{3}(\mathrm{PhCl})_{2}$ ．

Figure 2．Donor sheet structure of $(\mathrm{BSM}-\mathrm{TTP})_{4}{ }^{-}$ $\left(\mathrm{PF}_{6}\right)_{3}(\mathrm{PhCl})_{2}$ ．Calculated overlap integrals are as follows； $\mathrm{a} 1=24.7, \mathrm{a} 2=-20.3, \mathrm{a} 3=27.3, \mathrm{p} 1=$ $0.02, \mathrm{p} 2=-0.8, \mathrm{q} 1=-0.03 \times 10^{-3}$ ．

によって遮断されているために side－by－side 方向の相互作用は無視できる。ドナー分子は，四量化したドナーカラムを形成している（Fig．2）。重なり積分を計算した結果， スタック方向にのみ相互作用の大きい一次元電子構造であることが示唆された。この塩は室温 において， $25 \mathrm{Scm}^{-1}$ の伝導性を示し， 170 K で絶縁化した。
（ $\mathrm{BSM}-\mathrm{TTP})_{2} \mathrm{PF}_{6}$ ：この塩は θ 型分子配列 をとり，ドナー分子は均一に積層している（Fig． $3 \mathrm{a})$ 。積層方向における面間距離は 3.51 A であ った。積層内におけるドナー分子の重なり様式 は，Fig．3bに示すように（BTM－TTP） $2_{2} \mathrm{SbF}_{6}$ と同様，分子の長軸および短軸両方向にスリップ している。そのため積層内における重なり積分 の計算値は $(\mathrm{BSM}-\mathrm{TTP})_{4}\left(\mathrm{PF}_{6}\right)_{3}(\mathrm{PhCl})_{2}$ に比べる とかなり小さくなっている。バンド計算を行っ
（a）

（b）

Figure 3．（a）Donor sheet structure of （BSM－TTP）${ }_{2} \mathrm{PF}_{6}$ ，and（b）overlap mode in the stack．The calculated overlap integrals are as follows； $\mathrm{a}=4.7, \mathrm{~b}=8.4, \mathrm{p}$ $=6.8 \times 10^{-3}$ ．

Figure 4．The calculated energy dispersion and band structure of $(\mathrm{BSM}-\mathrm{TTP})_{2} \mathrm{PF}_{6}$ ．

【謝辞】

Rigaku AFC－8 MERCURYを用いた X 線構造解析を行らにあたり，お世話になり ました分子科学研究所の高橋一志博士ならびに小林速男教授に深く感謝いたします。

