新規常圧有機超伝導体κ-(DMEDO-TSeF)₂[Au(CN)₄](Solv.)の構造と物性

(理研)〇白旗崇・木舩愛・吉野浩子・今久保達郎

【序】我々は有機伝導体の結晶構造と物性の制御を目標に、I…X 型の特異な分子間相互作用 であるヨウ素結合や CH…O 型の水素結合を利用した新規有機伝導体の開発を行っている。 最近、CH…O 型の水素結合能力を持つ新規テトラセレナフルバレン(TSeF)誘導体 DMEDO-TSeF の合成に成功し、八面体アニオン(PF₆, AsF₆, SbF₆)を対アニオンとするカチオンラジカ ル塩が擬一次元金属を与えることを明らかにしている。^[1] また、DMEDO-TSeF を成分とす

る 二 つ の 新 規 常 圧 有 機 超 伝 導 体 κ_{H} - お よ び κ_{L} -(DMEDO-TSeF)₂[Au(CN)₄](THF) (1: κ_{H} -相, 2: κ_{L} -相)の開発にも成功している。^[2] 硫黄原子を含まないドナー分子でバルクの有機超伝導体を与えるの は、DMEDO-TSeF が TMTSF についで 25 年ぶりの新規分子である。 κ_{H} -相は monoclinic, $P2_{1}/c, \kappa_{L}$ -相は orthorhombic, Pnma に属し、 T_{c} (onset) はそれぞれ 4.8 K および 3.0 K である。結晶溶媒として取り込まれ ている THF は κ_{H} -相では order しているが、 κ_{L} -相では disorder してお り、この違いが T_{c} の値の傾向に反映されている。今回 THF 以外の 結晶溶媒として図1に示した DHF, THP および DHP 分子が取り込ま れた新規有機超伝導体の開発に成功したので、それらの構造と物性 について報告する。

図 1 DMEDO-TSeF 分子 と結晶溶媒分子

【実験】新規有機超伝導体 κ_L -(DMEDO-TSeF)₂[Au(CN)₄](Solv.) (3: Solv. = DHF; 4: Solv. = THP; 5: Solv. = DHF)の結晶作製は DMEDO-TSeF と TBA·Au(CN)₄ を対応する溶媒に溶解させ電気 分解することにより行った。いずれの場合も良質の黒色板状晶が得られており、これらの結 晶について X 線結晶構造解析と電気伝導度・磁化率の測定を行った。

【結果と考察】DHF, THP および DHP 中の結晶作製では一つの相が選択的に得られる。これ らの塩は THF 中の結晶作製で得られる κ_L -相 2 と同型であり、晶系は orthorhombic、空間群 は Pnma となっている(表1)。図2に結晶溶媒として THP が取り込まれた 4 のドナー分子配 列と絶縁層の構造を示す。ドナー分子の配列様式は κ 型で、点線で示したような CH…O 型の 水素結合が形成されている。また、ドナー分子の末端エチレン基は結晶溶媒が五員環の 2,3 では disorder しているが、六員環の結晶溶媒が取り込まれた 4,5 では order している。一方、

表 1	κ_L -(DMEDO	-TSeF) ₂ [Au	(CN) ₄](Solv	.)の結晶パ	ラメ	く ータ 。	$E T_{c}$	(onset)
-----	--------------------	-------------------------	--------------------------	--------	----	--------	-----------	---------

compound (Solv.) ^{<i>a</i>}	2 (THF) ^[1]	3 (DHF)	4 (THP)	5 (DHP)
crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
space group	Pnma (#62)	Pnma (#62)	Pnma (#62)	Pnma (#62)
<i>a</i> / Å	8.3269(13)	8.2803(12)	8.3630(11)	8.3980(12)
b / Å	38.638(6)	38.513(6)	38.892(5)	39.000(5)
<i>c</i> / Å	11.1203(17)	11.1493(16)	11.2433(15)	11.0472(16)
$V/\text{\AA}^3$	3577.8(9)	3555.5(9)	3656.9(8)	3618.2(9)
<i>R</i> 1; <i>Rw</i> 2 [$I > 2\sigma(I)$]	0.0492; 0.1273	0.0540; 0.1563	0.0602; 0.1458	0.0477; 0.1196
$T_{\rm c}$ / K	3.0	4.2	4.5	5.3

^{*a*} THF = tetrahydrofuran, DHF = 2,5-dihydrofuran, THP = tetrahydropyran, DHP = 3,4-dihydro-2*H*-pyran.

絶縁層には Au(CN)₄ アニオンの herringbone 配列 でできた空孔に disorder した THP 分子が取り込 まれており、4.9 Å の分厚い絶縁層が形成されて いる。しかしながら、DMEDO-TSeF 分子と Au(CN)₄ アニオンの間には多くの CH…N 型の水 素結合が形成されているため、分厚い絶縁層に 隔てられている伝導層間に CH…N 水素結合を介 した相互作用が働いていると考えられる。

図 3 に 2-5 の伝導面に対し垂直方向に測定し た比抵抗の温度依存性を示す。室温の値は 6.5 × 10^4 -1.3 × $10^5 \Omega$ cm と非常に大きく、絶縁層の厚 みが反映された異方性の強い物質であることが 分かった。また、伝導挙動は BEDT-TTF のк-Cu(NCS)₂ 塩などに類似しており、室温から抵抗 が徐々に上昇した後 100 K 付近で極大を示し、 低温で急激に抵抗が減少しそれぞれ 3.0 K (2), 4.2 K (3), 4.5 K (4)および 5.3 K (5)で超伝導転移を示 す。SQUID による磁化率の測定でも超伝導転移 を確認し、1.9 K の磁化率の値からいずれもバル クの超伝導体であることが分かった。今回新た に作製した三つの塩 3-5 はいずれも THF が取り

の福祉裕燥 THP および DHP が取り込まれた4,5 ではドナー分子の末端エチレン基が order してい ることが T_c 上昇の要因の一つと考えられる。さ らに4の結晶パラメータ a, b, c, Vは結晶溶媒の サイズが反映され 2 よりも増大しており、 "negative chemical pressure"の効果も T_c が上昇し た要因と考えられる。一方、五員環の結晶溶媒 が取り込まれた 2 と 3 の T_c を比較すると C=C 結合がある DHF を取り込んだ 3 の方が T_c は高 く、六員環の結晶溶媒が取り込まれた 4 と 5 で も同様の傾向が見られる。この T_c の差は、結晶 溶媒のサイズの違いによる chemical pressure の 効果以外に結晶溶媒の π 電子がこの系の超伝導転 移に関与している可能性も示唆している。以上

込まれた 2 よりも *T*_c が高くなっている。六員環 図 2 κ_L-(DMEDO-TSeF)₂[Au(CN)₄](THP)の結晶 の結晶溶媒 THP および DHP が取り込まれた 4, 5 構造; (a) ドナー分子配列; (b) 絶縁層の構造

図 3 κ_L-(DMEDO-TSeF)₂[Au(CN)₄](Solv.)の比抵 抗の温度依存性、挿入図は低温領域の拡大図

の結果から、DMEDO-TSeF の Au(CN)4 塩では結晶溶媒を変えることによって T_cを微細に制 御できると考えられ、他の溶媒中での結晶作製についても現在検討中である。

[1] T. Shirahata, M. Kibune and T. Imakubo, J. Mater. Chem., 2005, 15, 4399-4402.

[2] T. Shirahata, M. Kibune and T. Imakubo, Chem. Commun., 2006, 1592–1594.