1P066

シュレディンガー方程式における動径基底関数選点法による数値解法

電通大 佐野 達司

Galerkin法はシュレディンガー方程式の解法において選点法より正確な固有解を与えるこ とが分かっている。しかしながら,有限要素Galerkin法を用いて3次元あるいはより高次元 固有値問題を解く場合には要素分割(メッシュ生成)は極めて面倒なものとなる。一方,選点 法は補間に基づくので真にメッシュレスな方法と見なされる。選点法を用いた偏微分方程 式の解法においてRBFは大域的台を持つので,節点数が大きい場合には系行列がしばしば poorな条件を示す。本研究においては固有値問題を補間動径基底関数(RBF)近似を用いて有 限次元補間固有値問題として解く。Gaussian関数のような大域的台とWendland関数やWu関 数のようなコンパクト台を持つRBFによる選点法を用いて得られる数値結果を比較する。 RBF選点法を2次元Henon-Heilesハミルトニアンと3次元3結合非調和sextic振動子のポテン シャルモデルに適用してそれらの固有解を得る。

固有値問題 $H\psi(\mathbf{x})=\lambda\psi(\mathbf{x})$ と境界条件を伴う有界領域Dが与えられた場合の固有解を得る ことを考える。 N_i 個の内部節点と $N-N_i$ 個の境界節点が与えられていると仮定し,固有関数 $\psi(\mathbf{x})$ を同じ形状パラメータcを持つRBFの線形結合で

$$\psi(\mathbf{x}) = \sum_{i=1}^{N} w_i \varphi(\|\mathbf{x} - \boldsymbol{\xi}_i\|), \qquad \mathbf{x} \in \mathbf{R}^d$$

と近似する。このRBF近似を固有値問題とDirichlet境界条件に代入すれば, RBF選点行列形式:

$$\begin{bmatrix} \mathbf{H} \\ \mathbf{B} \end{bmatrix} \mathbf{w} = \lambda \begin{bmatrix} \mathbf{C} \\ \mathbf{0} \end{bmatrix} \mathbf{w}, H_{ij} = H\varphi(\|\mathbf{x}_i - \boldsymbol{\xi}_j\|), C_{ij} = \varphi(\|\mathbf{x}_i - \boldsymbol{\xi}_j\|) \quad (i = 1, \cdots, N_l), B_{ij} = \varphi(\|\mathbf{x}_i - \boldsymbol{\xi}_j\|) \quad (i = N_l + 1, \cdots, N_l)$$

が得られる。この方程式の解法として境界条件を固有値方程式に代入するアルゴリズムと RBF近似固有関数が境界において漸近的挙動を自動的に満たすものとして境界条件を陽に 考慮しないアルゴリズムを用いる。これら固有値方程式に対して非対称行列の一般化固有 値λ_nと重み固有ベクトルw_nを求める必要がある。ただし,RBF中心{ξ_i}と選点{x_i}に対して 同じセットを用いた。選点を除く*M*個の全補間点に関する残差の*L*₂ノルムを

$$E(\mathbf{w}_n,c) = \left[\sum_{k=1}^{M_I} \left\{H\psi(\mathbf{x}_k,\mathbf{w}_n,c) - \lambda_n\psi(\mathbf{x}_k,\mathbf{w}_n,c)\right\}^2 + \eta \sum_{k=M_I+1}^{M} \left|\psi(\mathbf{x}_k,\mathbf{w}_n,c)\right|^2\right] / \int \left|\psi(\mathbf{x},\mathbf{w}_n,c)\right|^2 d\mathbf{x}_n$$

のように定義する。最適な形状パラメータcを最低固有状態に対する2乗誤差量を最小にす るように調整する。ここでは大域的台を持つRBFとして用いたGaussian関数は

$$\varphi_c(r) = \exp(-(r/c)^2)$$

で表現される。一方,ここでコンパクト台を持つRBFとして用いたWendland関数は

$$\varphi_c(r) = (1 - r/c)^8_+ (32(r/c)^3 + 25(r/c)^2 + 8r/c + 1)$$

で表現され, C^{6} 級関数であり,かつ \mathbb{R}^{3} において狭義正定値である(C^{6} SPD₃で示す)。また, C^{4} SPD₃であるWu関数も用いた。ただし, $r=\mathbf{x}$,

$$(1-r)_{+} = \begin{cases} 1-r & (0 \le r \le 1) \\ 0 & (otherwise) \end{cases}$$

とする。これらコンパクト台を持つRBFは

$$\left. \varphi_{1}(1) = 0, \qquad \left. \frac{d\varphi_{1}(r)}{dr} \right|_{r=0} = \left. \frac{d\varphi_{1}(r)}{dr} \right|_{r=1} = 0$$

を満たす。

大次元非対称一般固有値問題を対角化するためにDavidson法を拡張した計算アルゴリズ ムを適用した。2次元 Henon-Heilesハミルトニアン系に対しては円領域内の正方格子上に置 かれた1373節点を用いた。量子数(91)状態の固有値についてGaussisnとWendland RBFから得 られた計算結果を表1に示す。Wendland RBFCはGaussian RBFCよりもFFSの計算結果に類似 した傾向を示し,良い精度が得られる。図1と図2はそれぞれGaussianとWendland RBF選点 法における量子数(00)状態の形状パラメータcに対するRMS誤差を示す。 表1

量子数(n l)	Gaussian RBFC	Wendland RBFC	FFS ³⁾	$DH^{4)}$
9 1	9.4448	9.4444	9.4442	9.4441
3	9.4679	9.4672	9.4670	9.4668
-3	9.5524	9.5527	9.5526	9.5524
5	9.6295	9.6297	9.6296	9.6294
7	9.7942	9.7944	9.7944	9.7941
-9	10.0355	10.0357	10.0356	10.0354
9	10.0356	10.0358	10.0359	10.0356
図1		図2		
KWS error of the second				

 [1] T Sano: XII ICQC2006 Abstract A149
[2] H Wendland: Adv Comput Math 4 (1995) 389
[3] Spectral method (MD Feit et al: J Comp Phys 47 (1982) 412)
[4] Semiclassical Gaussian basis set method (MJ Davis et al: J Chem Phys 71 (1979) 3383)