相対論的量子モンテカルロ法の開発
（東大工院）○中塚温、中嶋隆人、平尾公彦

【背景】
現在の量子化学計算で主流となっている ab initio 分子軌道法は、高精度で分子の物性値を計算し、その構造を決定できるようになっている。しかし、Coupled-Cluster 法や CI 法、摂動法などの電子相関理論では、計算コストが基底関数の増大と共に急激に大きくなり、さほど大きな分子系でも計算機の能力の限界に達してしまう。この計算コストの問題を解決するために様々な方法が試みられているが、まだ決定的な方法を見つけていない。

密度汎関数法は計算コストの面で優れており、大規模系に対する計算に用いられているが、交換相関汎関数に任意性があり、汎関数を評価する指標に欠ける。さらに van der Waals 力などの弱い結合の記述が困難、Rydberg 驱起状態を過大評価するといった問題点を持つ。

そのため、今後さらに多様な原子を含んだ大規模の分子系を扱うためには、系の拡大に伴う計算コストの増加が緩やか、密度汎関数法とは異なる手法が必要である。我々はその候補として量子モンテカルロ(QMC)法が有利であると考え、この手法の開発を行っていく。

量子モンテカルロ法には、以下のような利点がある。
1. 量子モンテカルロ法での計算コストは、一定の精度を得るために必要な演算数と考えられる。中心極限定理よりこのような計算コストは数値の 1 乗程度となっており、電子相関を扱える分子軌道法の手法に対し、有利である。
2. 量子モンテカルロ法では統計的な手法で期待値を求める。そのため、CPU 毎に別々にサンプリングし、データを収集、処理する手法で並列化が容易に行える。

これらの利点を活かし、金属一DNA 系など数例の興味深い系を扱うためには、計算コストの問題だけではなく、金属などの重い原子の取り扱いが極めて重要な問題となる。重原子を含む系においては相対論効果の影響が大きいため、非相対論的な理論では定性的にも妥当な結果が得られない場合がある。そこで周期表の広い範囲にわたる原子からなる分子系を取り扱うためには、相対論的な理論を構築することが必要となる。

相対論的な理論は、基本方程式となる Dirac 方程式を直接取り扱う四成分理論と、適当な変換を行うことで陽電子軌道を表す small 成分を除いた二成分の理論がある。四成分の理論は理論として厳密で、高精度であるが、陽電子軌道を取り扱うために計算のコストは高、一方、二成分の理論は精度と計算コストのバランスが良い。これまでに分子軌道法の枠組みの中では、四成分、二成分のどちらについても様々な相対論的手法が考案され、相対論効果の記述に成功してきた。しかし、量子モンテカルロ法の枠組みでの相対論効果の取り扱いは、これまでに非相対論的な Hamiltonian に対する補正項の計算にとどまっている。

そこで本研究では、相対論的な理論としての量子モンテカルロ法を開発することを目指す。

【理論】
変分モンテカルロ法（VMC）
波動関数Ψに対する演算子Aの期待値は、以下の式(1)のような積分形で与えられる。変分モンテカルロ法ではこの積分を式(2)のようにモンテカルロ積分を用いて行い、統計平均として期待値を得る。

\[
\langle \Psi | A | \Psi \rangle = \int \Psi^* A \Psi \, dr
\]
(1)

\[
\langle \Psi | A | \Psi \rangle = \sum_{\Psi'} \frac{\langle \Psi' | A | \Psi' \rangle}{\langle \Psi' | \Psi' \rangle} = \sum_{\Psi'} \frac{A_{\Psi' \Psi'}}{\Psi'}
\]
(2)

\[
\langle \Psi | A | \Psi \rangle = \frac{\langle \Psi | A \psi_0 | \Psi \rangle}{\langle \psi_0 | \psi_0 \rangle}
\]
乱数を用いたモンテカルロ積分は中心極限定理に従っており、その精度は積分空間の次元によらない。そのために、量子モンテカルロ法では一電子の分子軌道を作るのではなく、全電子の波動関数を直接に積分する。全電子を同時に扱うため、波動関数の表式が分子軌道法に比べて自由であり、二電子間距離に頼る依存項を含めることも可能である。

二成分相対論:
この研究では、Dirac 方程式に適当な Unitary 変換を行うことでの得られる free-particle の相対論的 Hamiltonian（式(3)）を用いる。

\[
H = E_p - c^2 + E_t \tag{3}
\]

\[
E_p = (c^2 p^2 + c^4)^{\frac{1}{2}}
\]

\[
E_t = A(V + BpVpB)A
\]

\[
A = \left(\frac{E_p + c^2}{2E_p} \right)^{\frac{1}{2}}, B = \frac{c}{E_p + c^2}
\]

実際の計算では、\(|\phi|^2\) に沿ってマルチフォン製を作り、以下で示す値をサンプリングする。

\[
E_p^{\text{local}} = \{c^4 + c^2(\nabla F + F^2)\}
\]

\[
F = \frac{\nabla \Psi}{\Psi}
\]

\[
(AV^2)^{\text{local}} = \left(\frac{E_p^{\text{local}} + c^2}{E_p^{\text{local}}} \right) \times V^{\text{local}}
\]

\[
(ABpVpBA)^{\text{local}} = \frac{1}{2} \left(\frac{c^2}{E_p^{\text{local}} (E_p^{\text{local}} + c^2)} \right) \times \left\{ (\nabla F + F^2) + F^2 \right\} \times V^{\text{local}}
\]

【結果】
相対論的変分モンテカルロ法のプログラムを作成し、原子についての計算を行った。今回の研究では、波動関数は Hartree-Fock 計算で得られた Slater-determinant に、電子間及び電子核間の相互作用を表す Jastrow-factor を掛け合わせた、Slater-Jastrow 型波動関数を用いた。また、モンテカルロ積分での精度に重要な影響を与える擬似乱数発生ルーチンには、周期が非常に長く、乱数としての性質のよいメルセンヌ・ツイスターを用いた。Jastrow-factor を用いない計算結果を以下に示す。

<table>
<thead>
<tr>
<th>基底関数</th>
<th>6-31G(d)</th>
<th>上段：QMC, 下段：HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>-2.8600 (4)</td>
<td>2.8601 (4)</td>
</tr>
<tr>
<td>He</td>
<td>-2.859902</td>
<td>-2.860002</td>
</tr>
<tr>
<td>Ne</td>
<td>-93.85 (3)</td>
<td>-93.98 (3)</td>
</tr>
<tr>
<td>Ne</td>
<td>-93.857270</td>
<td>-93.981339</td>
</tr>
<tr>
<td>Ne</td>
<td>-128.4 (8)</td>
<td>-128.5 (8)</td>
</tr>
<tr>
<td>Ne</td>
<td>-128.529887</td>
<td>-128.675358</td>
</tr>
</tbody>
</table>

さらに Jastrow-factor のパラメータ最適化を行い、電子相関を含めた相対論効果について検証を行う。