3P198 [Ag(CO)_n]⁺, [Au(CO)_n]⁺ (n=1,2)における炭素同位体効果

(北大院理¹,東工大原子炉研², SUNY Stony Brook³) 小野 ゆり子¹,藤井 靖彦²,石田 孝信³

【序】AgClのFSO₃H溶液をCO雰囲気下に置くことで溶液中には[AgCO]⁺が生成する。この錯体を含 む溶液は可逆的かつ迅速にCOを吸着及び脱着することが知られており、杜ら[1]によってこの系にお ける同位体分離係数が実験的に得られ、同位体分離のための吸着媒体としての可能性が示唆されてい る。本研究においては密度汎関数法を用いて [Ag(CO)_n]⁺/CO (n=1, 2)錯体系における炭素同位体効果の 解析を行い実験値との比較を行った。実験では低温領域において AgCl・FSO₃H 溶液への CO 吸着量が 増加し、同時に炭素同位体効果が大きく変わる現象が報告されているが、この現象が CO の配位数の 変化に起因する事を計算より明らかにした。また同現象は [Au(CO)_n]⁺/CO (n=1, 2)錯体系にも予想され る。溶液中に[Au(CO)₂]⁺の生成する低温領域[2]において高い炭素分離係数が期待される。

【理論】一般に次の様に表される同位体交換反応を考える。X は重同位体、X' は軽同位体を示す。

$$AX + BX' = BX' + AX \tag{1}$$

同位体平衡定数 K は、分配関数 Q を用いて次の様に表される。

$$K = \left(Q_{BX}/Q_{AX}\right) / \left(Q_{BX}'/Q_{AX}'\right)$$
⁽²⁾

全ての分子内・分子外振動が調和振動であると換算分配関数比は次式で表される。(h:プランク定数, c:光速度,k:ボルツマン定数,T:絶対温度, ;:i番目の基準振動の振動数,s:対称数)[3]

$$\frac{s}{s'}f = \prod_{i=1}^{3n} \frac{u_i}{u_i} \frac{\exp(-u_i/2)\{1 - \exp(-u_i)\}}{\exp(-u_i/2)\{1 - \exp(-u_i)\}}$$
(3)

b(u)/*b*(u')は Bigeleisen-Ishida の方法[4]より定義され、同位体平衡定数 K は次式で表される。

$$\ln b(u_i) = -\ln u + (u/2) + \ln(1 - e^{-u})$$
(4)

$$\ln K = \ln \frac{s}{s'} f\left(AX / AX'\right) - \ln \frac{s}{s'} f\left(BX / BX'\right)$$
(5)

【結果と考察】溶液中では以下の同位体交換反応が起こると考えられる。

$$[\mathbf{M}(^{12}\mathbf{CO})]^{+} + {}^{13}\mathbf{CO} \Leftrightarrow [\mathbf{M}(^{13}\mathbf{CO})]^{+} + {}^{12}\mathbf{CO}$$
(6)

$$[M(^{12}CO)_{2}]^{+} + {}^{13}CO \Leftrightarrow [M(^{12}CO)(^{13}CO)]^{+} + {}^{12}CO \quad (M=Ag, Au)$$
(7)

各系における平衡定数は以下に定義される。

$$\ln K = \ln(s/s') f[M(^{13}CO)/M(^{12}CO)] - \ln(s/s') f[^{13}CO/^{12}CO]$$
(8)

$$\ln K = \ln(s/s') f[M(^{12}CO)(^{13}CO)/M(^{12}CO)_{2}] - \ln(s/s') f[^{13}CO/^{12}CO]$$
(9)

また式(8)(9)に表される平衡定数は各系における分離係数(α)と定義される。[Ag(CO)_n]⁺, [Ag(CO)_n]⁺, CO 分子 (n=1, 2)に対し DFT 法(B3LYP, B3PW91)を用いて構造・振動数を決定した。基底関数は C, O 原子 については aug-cc-pVTZ を用い、Ag, Au には lanl2dz 有効内殻ポテンシャルを用いた。構造を Table 1 に示す。[M(CO)_n]⁺/CO(n=1, 2; M=Ag, Au)系において[M(CO)]⁺におけるr(MC)は[M(CO)₂]⁺におけるr(MC) より短くなる。得られた振動数を用いて Bigeleisen-Mayer の理論[3]より α を算出した。Table 2 に各系 の炭素同位体交換反応における平衡定数、及び振動数とそのb(u)/b(u')の値を示す。振動数のb(u)/b(u')の値が大きいほど、その振動数が同位体分離係数に及ぼす影響は大きい。次に[Ag(CO)]⁺/CO 系の実験 (253K 303K)で得られた炭素同位体分離係数と計算値の相関を求め、scale factor を算出し、その値 に基づき[Ag(CO)_n]⁺/CO(n=1, 2)系の計算値及び低温領域(233K)における実験による α を Fig. 1 に示す。 銀カルボニル錯体の低温領域における α は n=1 の計算値よりも n=2 における計算値に近い。 低温領域では溶液中の Ag^+ イオン濃度を越え た CO 吸着量が見られる現象と重ね合わせる と、低温領域では式(7)に示される同位体 交換反応が起こると考えられる。同様の計算 を $[Au(CO)_n]^+/CO(n=1, 2)$ 系にも試みた。金カ ルボニル系においても配位数により同位体 分離係数の大きな変化が起こる。特に低温領 域で高い炭素同位体分離係数が期待される 結果が得られた。

Table 1. Calculated equilibrium bond lengths (in Å) for $[\text{Ag}(\text{CO})_n]^+$, $[\text{Au}(\text{CO})_n]^+$ (n=1,2) and CO.

_	B3LYP		BPW91		
Species	r(AgC)	<i>r</i> (CO)	r(AgC)	<i>r</i> (CO)	
CO	-	1.126	-	1.137	
$\left[Ag(CO)\right]^+$	2.190	1.115	2.119	1.126	
$\left[Ag(CO)_2\right]^+$	2.140	1.115	2.092	1.126	
$[Au(CO)]^+$	1.945	1.116	1.901	1.130	
$\left[\operatorname{Au}(\operatorname{CO})_2\right]^+$	2.004	1.005	1.982	1.127	

Table 2.	Analysis of the	contributions to the	RPFR of	$\left[Ag(CO)_n \right]^+$, [Au(CO) _n]	(<i>n</i> =1,2) and	CO, at 26	3.15K	obtained
B3LYP leve	l of calculation.								

Species	Vibration Type	Frequencies	<i>b</i> (u)/ <i>b</i> (u')	RPFR	Κ	
		(cm^{-1})		(263.15K)	(263.15K)	
CO	CO str.	2158.1/2207.3	1.1185			
		Overall		1.1185		
$[Ag(CO)]^+$	Linear bend($\times 2$)	213.9/220.3	1.0034			
	Ag-C str.	239.0/242.3	1.0019			
	CO str.	2255.6/2307.9	1.1278			
		Overall		1.1376	1.017	
$\left[\operatorname{Ag}(\operatorname{CO})_{2}\right]^{+}$	OC-Ag-CO bend(×2)	46.9/ 47.0	1.0000			
	OCAg bend ($\times 2$)	232.9/236.8	1.0022			
	CAg str.	246.1/248.3	1.0013			
	OCAg bend $(\times 2)$	267.2/270.9	1.0024			
	CAg str.	291.1/292.6	1.0011			
	OCAg str.	2255.4/2303.2	1.1159			
	OCAg str.	2308.9/2313.6	1.0110			
		Overall		1.1415	1.021	
$[Au(CO)]^+$	Linear bend($\times 2$)	305.9/315.3	1.0070			
	Au-C str.	386.5/392.1	1.0051			
	CO str	2249.2/2302.5	1.1302			
		Overall		1.1519	1.030	
$[Au(CO)_2]^+$	OC-Au-CO bend(×2)	64.3/64.4	1.0000			
	OCAu bend $(\times 2)$	307.4/312.5	1.0037			
	CAu str	345.7/348.1	1.0020			
	CAu str	387.1/390.1	1.0027			
	OCAu bend (×2)	402.3/408.7	1.0060			
	OCAu str.	2255.0/2295.9	1.0982			
	OCAu str.	2318.4/2331.0	1.0295			
		Overall		1.1582	1.035	

【参考文献】

[1] J. Du and Y. Fujii, Phys. Chem. Chem. Phys., 3 (2001)5237.

[2] Q. Xu, Y. Imamura, M. Fujiwara, and Y. Souma, J. Org. Chem,. 62(1997)1594.

[3] J. Bigeleisen and M. G. Mayer, J. Chem. Phys., 15(1947)261.

[4] T. Ishida, W. Spindel, J. Bigeleisen, Isotope Effects in Chemical Processes, RF Gould, Ed., Advan. Chem. Series, **89** (1969) 192.