3P140 電子状態励起アセチレンの ungerade 振動準位の polyad 構造

(日女大理¹・城西大理²・UBC³)

山北 奈美¹·今城 尚志¹·土屋 荘次²·Anthony J. Merer³

【序】高振動励起状態にある多原子分子は、異なる振動モード間の非調和相互作用により基準振動の独立性が崩れ、共鳴的量子準位構造に移行する。高励起状態に固有なモードの例として、電子基底 X 状態アセチレン分子では、v4"とv5"2量子が結合して生じる polyad 構造が知られている [1]。本研究では、電子励起 A 状態アセチレンの *ungerade* 振動状態について、v4'とv6'が結合して生じる polyad 構造を実証したので報告する。

【実験】超音速ジェットとした電子基底 \tilde{X} 状態のアセチレンを、OPO 赤外レーザーで逆対称 伸縮振動 v_3 "状態の選択した回転状態に励起し、約5 ns 後に YAG レーザー励起色素レーザー の2 倍波の紫外レーザーを照射して、赤外 - 紫外 2 重共鳴 LIF スペクトルを測定した。対称 性の選択則により、中間状態として Σ_u 状態を経由する 2 重共鳴励起では電子励起 \tilde{A} 状態の *ungerade* 振動準位が観測される。

【結果と考察】アセチレン分子の構造は、電子基底 X 状態では直線型、電子励起 A 状態では トランス型である。励起状態の分子形は対称中心を持つので、その基準振動は 3 つの gerade 振動と 3 つの ungerade 振動に分類できる。 X 状態から A 状態への遷移では、両者の構造の 違いによってフランク・コンドン因子の大きい CC 伸縮振動v2'やトランス変角振動v3'が強く 現れる。実際、紫外光 1 光子励起で到達する gerade 振動準位で強く観測されるのは、3ⁿ およ び 2¹3ⁿ 状態へのプログレッションである。

中間状態として Σ_u 状態を経由した場合には b_u 対称の振動状態のみが許容遷移であるにもか かわらず、面外変角振動v4'(a_u)とシス変角振動v6'(b_u)の間にコリオリ相互作用が働くた めに、本来対称禁制なv4'が観測されることが知られている [2]。また昨年度の分子構造総合 討論会で報告したように、*gerade* 振動準位で強く観測されるプログレッションに 4¹/6¹(以後 これらをまとめて B¹(B=4 または 6)と書く)振動が結合した 3ⁿB¹状態および 2¹3ⁿB¹状態 への遷移が観測されている[3]。

以上の基本的な振動準位構造の他に、v4、v6'モード間の結合による polyad 準位構造の形成 を見出した。すなわち、 $\{B^3\}$ には $\{4^3(a_u), 4^26^1(b_u), 4^16^2(a_u), 6^3(b_u)\}$ の4つの状態が 存在する。昨年度はこの領域に combination difference 法が適用できない多数のピークが現 れた2重共鳴スペクトルを報告した[3]が、その後いくつかの条件を変えて測定を行ったとこ ろ、帰属不能だった多くのピークが多光子遷移によって生じていたことが明らかになった。 ここで対称性から許容な遷移は b_u 対称の状態のみであるが、v4'と同様にコリオリ相互作用に よって本来禁制な準位も観測され、4つがスペクトル線群を作ると考えられる。*gerade* 振動 状態においては、 2^1 や 3^1 と B^2 が共鳴相互作用をして polyad 準位構造を作ることが指摘され たが [4]、今回 *ungerade* 振動状態で B^3 に帰属できると考えられるスペクトルの観測に成 功した。図1 に、 B^1 および B^3 の、実測されたスペクトルから作成した Reduced term value プロットと、計算値から得られたプロットを示す。計算に用いた定数は、 B^1 について Utz ら が決めたコリオリ定数 ($\zeta_{a}=0.7074$ 、 $\zeta_{b}=0.6999$)[2]、および非調和項については量子化学計 算その他のデータから推定されたものである ($x_{44}=-14.9$ 、 $x_{66}=-8.0$ 、 $x_{46}=-5.7$)。B¹ の実 験値はよく再現しているが、B¹で決まったコリオリ定数では B³の実験値を完全には説明でき ない。図1(d)で4¹6²のK_a=1シリーズとK_a=0シリーズのエネルギー差は約56 cm⁻¹であるが、 他の振動ではその差は10-20 cm⁻¹と小さい。図1(c)で約2420 cm⁻¹に孤立して存在するK_a=1 シリーズは4¹6²に帰属できるかもしれない。a-type コリオリ相互作用の大きさが振動の対称 性に依存するか、B³では B¹よりも高次の非調和項の影響が大きいのか、などの問題点につい ての詳細は検討中である。

(a)B ¹ 実測值 (b)	B1計算值 (c) B3	実測値 (d) B³計	算値(実測値	ī: 1	R 枝;	Q 枝;	P 枝;
計算値: Ka=0:	A symmetry,	B symmetry;	Ka=1:	А,	B;	Ka=2:	А,	B)

- 【参考文献】[1] K.Yamanouchi and S.Tsuchiya, "Vibrational Dynamics in Highly Excited Polyatomic Molecules", in "Dynamics of Excited Molecules", ed. by K.Kuchitsu, Elsevier Science B.V. (1994). Chapt. 7.
 - [2] A.L.Utz et al., J.Chem.Phys., 98, 2742 (1993).
 - [3] 山北, 今城, 土屋, Merer, 4P084, 分子構造総合討論会 2004.
 - [4] A.J.Merer, N.Yamakita, S.Tsuchiya et al., Mol. Phys., 101, 663 (2003).