クラスターの構造最適化アルゴリズムの開発と それのレナード-ジョーンズクラスターへの応用 (北大院理) 竹内 浩

【序】原子や分子からなるクラスターには多くの安定構造が存在する . 例えば , Lennard-Jones (LJ) クラスターでは , それの数は原子数に対して指数関数的に増加する ¹⁾ことが知られている . したがって , クラスターサイズnが大きくなると最安定構造を決定することが困難になる . このような複雑なエネルギー景観を持つ系における最適構造検索は , たんぱく質や結晶の構造を推定する場合にも行われ , これを迅速に行うアルゴリズムが盛んに研究されている . 本研究では , エネルギーを基にした構造変異オペレーターを開発し , global minimum(GM)が既知であるLJクラスターの構造最適化を実行した . 得られた結果を文献^{2,3)}と比較し , 本研究で開発した最適化アルゴリズムの効率を検討した .

【計算方法】m個の原子をクラスター LJ_n の表面上で移動させるオペレーター (S_m) とクラスター内部に移動させるオペレーター (I_m) を用いて,構造最適化を実行する.移動する m 個の原子としては,それらの原子が関与するポテンシャルエネルギーを計算し,これの値が最大となる原子を選択する.

原子をクラスター表面で移動させる場合には、初めに移動する原子を除いたクラスター LJ_{n-m} の表面上の安定なサイトを求める.そのために, LJ_{n-m} の表面にランダムに 1 個の原子を加え,その原子の座標のみを最適化する.これを繰り返すことによって得られたサイトの中から,移動する原子の座標と異なるm 個のサイトを選択する.それらのサイトが関与するポテンシャルエネルギーを計算し,それが最小値を持つサイトに原子を移動させる.計算では,m-4 とし,m=1 の場合には,エネルギーの最も高い原子に加え,2 と 3 番目に高い原子も選択する(対応するオペレーターをそれぞれ S_{m-1}^1 , S_{m-1}^2 , S_{m-1}^3 と表記する).

クラスター内部に移動させる時,原子の位置は,クラスターの重心に最も近い原子の周囲にランダムに決定する.この I_m オペレーターは, S_m オペレーターによる検索が停滞した時に検索をリスタートするためのものであり,m は 4 または 5 とした.

最安定構造の検索は以下の手順で行った.

- 1) ランダムにクラスターの初期構造を生成し、それを準ニュートン法により局所最適化する。
- 2) 得られたクラスターに対して $S_{m=1}^1$ オペレーターを作用させた後に,それの構造を局所最適化する.
- 3)最適化後のエネルギーがより低くなれば,新しい構造を採用し,ステップ 2 に戻る.そうでない場合には, $S_{m=1}^2$, $S_{m=1}^3$, $S_{m=2}$, $S_{m=3}$, $S_{m=4}$ オペレーターを順次作用させ,構造を局所最適化する.この過程でエネルギーが低くなった時には,新しい構造を採用し,ステップ 2 に戻る.
- 4) S_m オペレーターでエネルギーが下がらない時には, $I_{m=4}$ または $I_{m=5}$ オペレーターを作用 させ,それの構造を局所最適化する.その後にステップ 2 に戻る.

 I_m オペレーターを作用させる直前のエネルギーをモニターし,それに改善が見られない時には計算を終了する.

以上の計算を 1 サイクルとして,既知の GM^{4-6} が得られるまで上記のサイクルを繰り返す.現在までにn が 20 から 160 までと 200, 250, 300 について計算を行った.

【結果と考察】GM が 5 回得られるまで計算を実行し,n が 20 から 160 までの平均局所最適化数を図 1 に示す. 平均の計算時間(3.0 GHz Pentium 4 processor)は,n = 100 で 1分,200で 12分,300で 95分である.

図 2 に n = 200 の時の GM が得られた サイクルにおけるポテンシャルエネル ギーの変化を示す . また , I_m オペレーターが実行された場合を*で示す . このオペレーターによるリスタートで GM を検出したサイクルは 5 回中 3 回で n が 250 と 300 では ,全てのサイクルで I_m オペレーターが実行されていた . したがって ,このオペレーターがアルゴリズムの効率を高くしていることがわかった .

今回開発した構造最適化法を文献 ^{2.3)} と比較した(表 1).本研究の最適化数は , n 75 で文献 3 より少なく ,文献 2 とは n 102 で同程度であるが , n 150 では今回のアルゴリズムの最適化数が約 1/2 であることがわかる .今後は ,n > 160 について計算を行い , アルゴリズムの効率をより詳細に検討する予定である .

【参考論文】 1) D. W. Wales, *Energy Landscapes*, Cambridge Univ. Press, Cambridge, 2003. 2) X. Shao et al., *J. Comput. Chem.*, 25, 1693 (2004). 3) L. Cheng et al., *Chem. Phys. Lett.*, 404, 182

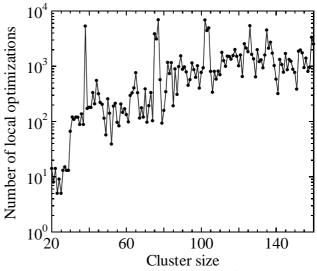


図 1 局所最適化数のサイズ依存性

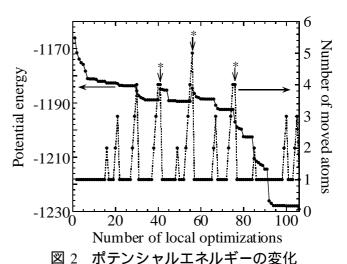


表 1 Global minimum を求めるのに必要な

n	This work	Shao et al. ²⁾	Cheng et al. ³⁾
30	66	43.5	132
38	5318	3240	1739
50	255	270	264
75	3836	2586	86000
100	773	610	2525
102	6875	7733	13880
150	772	1398	3230
200	2172	4494	56550
250	6570	11347	
300	7535	14875	

(2005). 4) D. J. Wales and J. P. K. Doye, *J. Phys. Chem. A*, 101, 5111 (1997). 5) D. Romero et al., *Comput. Phys. Commun.*, 123, 87 (1999). 6) http://www-wales.ch.cam.ac.uk/.

局所最適化数