3P031

Ce2@C80アニオンの磁気的性質

(首都大・都市教養¹,都立大院・理²) 〇兒玉健¹,東維成²,市川岳史²,三宅洋子¹, 鈴木信三¹,菊地耕一¹,阿知波洋次¹

《序》

最近、加藤らは La₂@C₈₀ アニオン の ESR スペクトルを測定し、非常に 大きな超微細結合定数を持つスペクト ルを得た[1]。この結果は、La₂@C₈₀ アニオンにおいて、外部から注入され た余分の電子が La ダイマー上に分布 すると考えることによってうまく説明 されている。

ところで、Ce₂@C₈₀ は La₂@C₈₀ と同一構造の C₈₀ フラーレンケージに Ce を 2 個 内包した分子であり、La₂@C₈₀ と大変良く似た酸化還元挙動を示す。よって、アニ オン化した場合、La₂@C₈₀ アニオン同様、余分の電子は Ce ダイマー上に分布する と考えられる。ただし La の場合と異なり、Ce は 4 f 電子を 1 個有する。このため、 Ce ダイマー上に分布した余分の電子と Ce 上の 4 f 電子との間の相互作用に興味が 持たれる。本研究では Ce₂@C₈₀ アニオンの磁気的性質を明らかにすることを目的と して、主として ¹³C NMR の測定を行った。

《実験》

Ce と炭素の混合ロッドを陰極に用いた直流アーク放電により Ce 内包フラーレン を含むススを合成した。得られたススを 1,2,4-トリクロロベンゼンで還流し、フラ ーレン類を抽出した。Ce₂@C₈₀の分離は多段階の HPLC で行い、質量分析によって 単離を確認した。

Ce₂@C₈₀アニオンは、ジメチルホルムアミド(DMF)とCS₂の1:2 混合溶媒、あるいは、トリエチルアミン(TEA)とアセトンの1:3 混合溶媒により生成した。La₂@C₈₀をこれらの混合溶媒に溶解し、ESRを測定したところ、加藤らの報告と同様のESR スペクトルが得られたことから、これらの混合溶媒でアニオンを生成できることを 確認した。¹³C NMRの測定は、125MHz で行った。

《結果》

図1に室温で測定した中性のLa₂@C₈₀と、中性とアニオンのCe₂@C₈₀の¹³CNMR スペクトルを示す。La₂@C₈₀のピークに対してCe₂@C₈₀のピークがシフトしている ことが分かる。これは、内包Ceに由来する常磁性シフトと考えられる。一方、Ce₂@C₈₀ の中性とアニオンのピークは、明らかに異なった現れ方をしている。特に強度比1 (赤丸印)のピークは、中性で は La₂@C₈₀のピークに対して、 高磁場側にあったのに対し、ア ニオンでは低磁場側に現れてい る。

図2に Ce₂@C₈₀の中性とアニ オンの¹³C NMR スペクトルの温 度変化を示す。中性のスペクト ルでは、2つのピークが温度が 上がるにつれて、La₂@C₈₀の2 つのピークに近付くのが分かる。 これは、温度が上がるにつれて、 内包金属の磁化が小さくなると

図1. La₂@C₈₀(中性)と Ce₂@C₈₀(中性と アニオン)の¹³C NMR スペクトル(室温)

いうことで説明ができ、我々はこれを解析することで Ce の C₈₀ ケージ中での位置を 推定することができた[2]。一方、アニオンでは、温度上昇につれて、2つのピーク が La₂@C₈₀ の2つのピークから離れていく。この温度依存性について、どのような モデルを考えることができるかについて、当日は議論する予定である。

[1] T. Kato et al., Fullerenes and Nanotubes: The Building Blocks of Next Generation Nanodevices, The Electrochemical Society Inc., Pennington 2003, p. 564.
[2] 市川ら,分子構造総合討論会2004, 2P125.