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Introduction. DNA bases have very low quantum yield 

for fluorescence.1  In effect, photo-induced reactions in 
living cells are diminished despite the observation that the 
lowest light-absorbing 1ππ* excited states of DNA bases lie 
approximately 5 eV above their respective ground states. 
This significant energy deposited in the molecule could 
have triggered a variety of photoreactions, presumably with 
harmful consequences to the organisms which these bases 
make up. Fortunately, ultrafast nonradiative decay proc-
esses seem to quench reactive decay channels back to the 
electronic ground state providing DNA with a high level of 
photostability.1,2 
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Figure 1 . Tautomers of adenine.

9H-adenine7H-adenine

The fluorescence quantum yield for adenine is only about 0.0003.1,3 Wilson and Callis previously re-
ported that the major part of the fluorescence is due to the minor tautomer 7H-adenine.4 In this report, we 
aim to present a detailed picture on the mechanism of nonradiative decay of 9H-adenine. 

Methodology. Geometry optimizations were performed with the complete-active-space 
self-consistent-field (CASSCF) method5. 

The basis set combination proposed by Sobolewski and Domcke6 was used all throughout. For all at-
oms except the nitrogen atom at position 9 (Fig. 1) and the hydrogen atom of the azine (NH) group, the 
standard 6-31G(d,p) split-valence double-zeta Gaussian basis set with polarization functions for all atoms7 
was used. In order to allow for greater flexibility for the description of the diffuse σ* orbital, the azine 
nitrogen 6-31G(d,p) basis set was supplemented with a standard set of s and p Gaussian diffuse function 
[6-31+G(d,p)]. For the azine hydrogen atom, an additional set of s and p Gaussian diffuse function of 
exponent ζ = 0.02 was added to 6-31G(d,p). 

The CASSCF active space used throughout consists of 
the three highest π orbitals, two lowest π* orbitals and the 
lowest σ* orbital effectively affecting a 
six-electrons-in-six-orbitals calculation. 

Diabatic potentials, non-adiabatic coupling matrix ele-
ments and transition dipole moments were calculated by 
using the MOLPRO8 package of quantum-mechanical rou-
tines. Diabatization was done using the procedure proposed 
by Werner and co-workers 9  and implemented in 
MOLPRO.  

 
(a) 

In order to construct a two-dimensional potential energy 
function for the description of the azine hydrogen detach-
ment in adenine, we have chosen the azine NH bond 
length―a natural choice―for the tuning coordinate. The 
out-of-plane angle of the dissociating H atom, identified by 
Sobolewski and Domcke6 as the primary coupling coordi-
nate of the conical intersections, was chosen as the cou-
pling mode. The tuning and coupling modes are hereinafter 
referred to as r and θ, respectively. 

In order to have a clear distinction among the states, the 
molecule was constrained to be planar (Cs). Geometry op-
timization at the ground state yields a slightly nonplanar 
amino group.10 The energy difference, however, is only a 
fraction of a kcal/mol and is deemed negligible for the pre-
sent purpose. 

Results and Discussion. At least two conical intersections 
in the potential energy surfaces (PES) are found to be involved 
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Nonadiabatic couplings in the adiabatic representation likewise show rapid variation near the crossing. This 
singularity represent the microscopic origin of ultrafast nonadiabatic transition near the conical intersection. Fig-
ure 5 is a plot of the non-Born-Oppenheimer coupling elements in the vicinity of the S0-1πσ* conical interse
Cal

 S0-1πσ* diabatic-to adiabatic mixing angles. Figure 4. Figure 5. S0-1πσ* nonadiabatic coupling matrix elements. 
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Figure 3. (a) 1ππ*-1πσ* (b) S0-1πσ* PES crossings in the diabatic representation. 

culated adiabatic transition dipole moments also demonstrate rapid variation at the point of intersection. 
The time evolution of an optically-prepared Franck-Condon wave packet initially at rest in the lowest opti-

cally-allowed excited state will be calculated using the standard split-operator method11 with off-diagonal dipole 
12 diabatic coupling terms represented as Pauli matrices .  

The molecular dynami 1

stat 1e and the lowest πσ*. 
Conclusion. The dark 1πσ* state of 9H-adenine intersect both the ground state and the lowest optically ac-

cessible 1ππ* state. Initial results indicate that explicit assumption of a two-dimension (tuning and coupling), 
three-state (S0, 1πσ* and 1ππ*) model may be necessary to adequately desc

ugh at least two conical intersections. 
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