2P079

交換相互作用と超伝導電子対の生成の関係

(名大院情・金沢大理¹・阪大院理²) 〇山木大輔・安田耕二・長尾秀実¹・山口兆²

高温超伝導の機構の議論のために Hubbard 【序】 モデルと t-J モデル (式1・2) が多く利用されてい る。このような有効モデルは ab initio 計算の結果の解 釈や、ab initio 量子化学計算で用いた近似の補正に利 用することができる。[1,2]

$$\hat{H}_{\text{Hubbard}} = -t \sum_{i,\sigma} (a_{i\sigma}^{+} a_{j\sigma} + a_{j\sigma}^{+} a_{i\sigma}) + U \sum_{i,\sigma\neq\tau} a_{i\sigma}^{+} a_{i\sigma} a_{i\tau}^{+} a_{i\tau}$$
(1)

$$\hat{H}_{i,\mathrm{J}} = -t \sum_{i,\sigma} (a_{i\sigma}^{+} a_{j\sigma} + a_{j\sigma}^{+} a_{i\sigma}) + J \sum_{i,j} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j}$$
(2)

これらのうち、Hubbard モデルは、サイト内電子反 発Uと電子遷移のパラメータtからなるモデルである。 t-J モデルは Hubbard モデルの状態に対し2重占有を 禁止することにより導出されるモデルであり、サイト 間の有効交換積分 Jと電子遷移のパラメータ t からな る。Hubbard モデルから導出した場合、この有効交換 積分はUの関数として表される。

Hubbard モデルと t-J モデルではサイト間の有効交 換相互作用の取り扱いが異なる。Hubbard モデルでは tによる一重項の安定化の効果をUにより弱めること によりサイト間の有効交換相互作用を間接的に調節 する。一方、t-Jモデルではパラメータ」により直接的 に取り扱う。ここで、2電子2サイトの双方のモデル の基底状態を考えると、Hubbard モデルは、どのよう なパラメータを選んでも常に一重項なのに対し、t-J モデルは一重項と三重項の両方をとりうる。t-Jモデル は Hubbard モデルから導出されることが多いにもか かわらず、Hubbard モデルでは表現できない状態をカ バーしていることになる。

本研究では Hubbard モデルに直接的な交換相互作 用の項を加えることにより、モデルの電子状態にどの ような影響があらわれるかを検討する。妥当な形で交 換相互作用の効果を取り入れるため、ab initio の積分 の形式よりモデルを導出する。そして、クラスター計 算の範囲内で超伝導電子対 (クーパー対)の生成の関 係を明らかにする。直接スピン演算子を導入した t-U-J モデル[3]との比較も行う。

【Modified Hubbard モデル】 Ab initio 計算にお いて2個の同じ形状の基底関数からなる2電子積分

t U=(11|11)=(22|22) V=(11|22)=(22|11) V x=(12|21)=(12|12)=…の3種であるがこれらの基底 関数からなる2電子2サイトモデルを考えるとVの値 はUに繰り込めるためモデルに含めないことにする。 これにより、次のようなモデルが得られる。

$$\hat{H}_{\rm MH} = -t \sum_{i,\sigma} (a^+_{i\sigma} a_{j\sigma} + a^+_{j\sigma} a_{i\sigma}) + U \sum_{i,\sigma\neq\tau} a^+_{i\sigma} a_{i\sigma} a^+_{i\tau} a_{i\tau} + x \sum_{i,j} \left(a^+_{i\sigma} a_{j\sigma} a^+_{i\tau} a_{j\tau} + a^+_{i\sigma} a_{j\sigma} a^+_{j\tau} a_{i\tau} \right)$$
(3)

この2電子2サイト系の一重項と三重項の差、つまり 有効交換相互作用にあたるエネルギーは、

$$\Delta E_{T-S} = \frac{1}{2} \left(-U + \sqrt{U^2 + 16t^2} \right) - 2x \tag{4}$$

である。第一項のUに依存する部分は常に正の値だが、 x に依存する項は正負両方の値をとることが出来る。 また U→∞のとき、U に依存する部分がゼロとなり x が有効交換積分となる。

Modified Hubbard モデルの U-x 依存性を 【計算】 調べるために4電子4サイトモデル(図1)の計算を 行った。超伝導電子対 (クーパー対)の生成を調べる ために二次縮約密度行列の固有値を計算した。ハート リーフォック法での最大固有値は1なので、1より大 きい場合、クーパー対が生成し凝縮していることを示 す。

図 1 計算モデル 【結果と考察】 図2に二次縮約密度行列の最大固 有値の x-U 依存性を示す。通常 Hubbard モデルでは、 この小さなクラスターでは引力的相互作用がない限 りクーパー対は生成しない。実際に x=0 の直線上では U<0 の領域のみが大きな値となっている。しかし、相 互作用 x を含むこのモデルは U=2x 付近で固有値の異 常があり、パラメータ x・U が正の領域において大き な固有値を与えることがわかる。

図3に基底状態の電子配置の x-U 依存性を示す。主 要な電子配置から I~IV の4種の領域に分割すること ができた。領域Iでは4個の電子が隣り合うサイトを 占有している配置が主要な配置であった。領域 II も I 同様4個の電子が隣り合うサイトを占有している状 態が主要である領域だが、領域Iとは位相の関係が異 なり同符号の線形結合となっている。領域IとIIの境 界では二つの配置の位相が反転する。この境界では固 有値の異常がみられる。領域 III の主要な配置では対 角線上の二つのサイトに4個の電子が占有している。 領域 IV では各サイトに電子が一つずつ局在する状態 が主要な配置となっている。II の領域と領域 IV と III の境界付近で最大固有値が大きな値を示している。 U=2xの直線が IV と III、I と II の境界になっている が、IV と III の境界では双方の領域の電子配置が同じ 重みで混ざっているが、IとⅡの境界では位相の違い から一部の電子配置が打ち消し合っている。最大固有 値が値の定性的な違いは、この点が原因と考えられる。

【まとめ】 直接的な交換相互作用の効果を考慮した モデルを導出した。このモデルの2電子2サイト系に おいては一重項-三重項間のエネルギー差は電子反発 Uによる効果と直接的な交換相互作用xによる効果か らなる。

このモデルの基底状態の二次縮約密度行列の固有 値からクーパー対の生成の傾向がみられた。Uが斥力 的なとき、交換相互作用に対応する x と電子反発 U の 両方が必要であった。これは交換相互作用と電子反発 が関与するクーパー対生成機構の可能性を示唆して いる。

モデルが ab initio ハミルトニアンから導いたモデ ルなので対応した近似波動関数の計算が行いやすい。 そのため、このモデルを利用した ab initio 計算の補正 につかうことができる。

このモデルでは ab initio の積分の対称性より、x 項 の電子の交換の項と2重遷移の項に対して同じパラ メータを与えた。この影響により交換相互作用の項の 効果が薄められ、計算した4サイトモデルでは全領域 で一重項が基底状態となった。この項の独立な効果に ついては今後検討する。t-U-Jモデルとの比較は当日発 表する。

参考文献

 D. Yamaki et al. Int. J. Quant. Chem. 96, 10 (2004).
D. Yamaki et al. Int. J. Quant. Chem. 103, 73 (2005).
L. Arrachea. D. Zanchi, Phys. Rev. B 71, 064519(2005)
S. Daul, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 84, 4188 (2000).

図2 二次縮約密度行列の最大固有値

図3 4サイトモデルの基底状態の主要な電子配置