2C15

高分解能 XPS を用いた Pd(111)表面における CO 酸化反応の機構解明

(¹東大院理, ² Lund Univ., ³産総研) 中井郁代¹, 近藤 寛¹, 島田 透¹, Andrea Resta ², Jesper N. Andersen ², 折田秀夫³, 太田俊明¹

【はじめに】白金族表面におけるCO酸化反応は、最も基本的な表面反応の1つとみなされ、機構に関 する多くの研究がなされてきた。我々は、Pt(111)表面におけるCO酸化反応について、CO分子の吸着に 伴って原子状酸素の拡散が抑制されてアイランドに凝集することにより、反応サイトが切り換わるこ とを明らかにした[1]。このように、吸着種間相互作用が反応経路を決定する機構は興味深い。Pd(111) 表面においては、O-COの間の反発相互作用が大きく、COの吸着に伴って、原子状酸素のドメインが p(2x2) ($\sqrt{3x}\sqrt{3}$) $R30^{\circ}$ p(2x1)と容易に圧縮される[2,3]。それぞれの相が異なった反応性を示すことは示 唆されてきたが、詳細な機構は分かっていない。そこで我々は、この吸着種間相互作用が強く働く系 で、反応経路がどのように変化するのかを探ることを目的とし、高分解能かつ高速のX線光電子分光法 (XPS)を用いて反応を定量的に追跡し、速度論による考察を行った。

【実験】実験はスウェーデン国立放射光施設 MAX-lab の軟 X 線アンジュレータービームライン I311 において行った。

まず、清浄化した Pd(111)表面に、300 K で酸素を飽和解離吸着させた。これを一定の反応温度に保 ち CO ガスを一定圧で導入した。この間、160 eV の X 線を光源とし、O 2s XPS スペクトルを連続して 測定した。1 つのスペクトルにかかる時間は約 20 秒であった。

図1にO2s XPSの時間変化の例を示す。時間とともにCOの 被覆率が増加し、O+CO→CO2↑の反応によりOが減少している。 カーブフィット解析を行い、O, COそれぞれの被覆率の時間変 化を定量的に調べた。

【結果】図2に、被覆率の時間変化の代表的な結果を示す。図 中に示したよう、Oのドメインの圧縮に伴い、反応経路が切り 換わる。

(0) *p*(2x2)相は、充分に低温、高圧の条件では CO と反応せず、 「誘導期」が観測される。

(I) (√3x√3)R30[°]相はCOと反応し、反応次数は 1/2 次である。
(II) *p* (2x1)相も CO と反応するが、反応次数は 1 次である。
200 K 以下では反応(II)によって、200 K 以上では反応(I)によって大部分の O が消費される。

図3に、反応速度定数の温度依存性を示す。反応(I)では温度 依存性が非常に小さいのに対し、反応(II)は大きな温度依存性

を示す。活性化エネルギーにすると、反応(I)は 0.04±0.02 eV (2x10⁻⁸ Torr)、反応(II)は 0.29±0.03 eV (5x10⁻⁷ Torr)となった。

反応(I)については、1/2 次という次数から、 (√3x√3)R30°ドメインの縁で反応が進行しているこ とが分かる。この反応過程はCOのガス圧に対してほ ぼ1次の依存性を示したが、これより、境界で隣接 して吸着しているOとCOが反応するのではなく、気 相と平衡になって弱く吸着したCOがドメインの縁 でOと反応することが示唆される。0.04 eVという非 常に小さい活性化エネルギーもこの機構を支持する。 この場合、求められた活性化エネルギーは、反応に 関わるCOの吸着熱と、真の反応活性化エネルギーの 差として理解される。COガスの供給を止めた後に脱

温度依存性

(比較のため、1/2 次反応の速度定数は、θ₀=0.25 MLを 仮定し、1 次反応に換算してある)

離するCOの脱離速度から、吸着熱を見積もると 0.58 eVとなった。これより、反応自体の活性化エネル ギーは 0.62 eVと見積もられる。

反応(II)については、その1次という次数から、ドメイン全体で反応が均一に進行していることが分かる。これまでのSTM[2]やLEED[3]を用いた研究から、p(2x1)ドメイン中には、Oのみが存在し、COは存在していないことが明らかになっており、我々のXPS, DFT計算の結果もこれを支持する。しかし、今回ドメイン全体で反応が進行することを示すキネティクスが観測されたことから、COがドメインの中にも存在し、Oと反応していることが示唆される。反応速度に COの圧に対する依存性が見られたことから、反応に関わる COは、基板に弱く束縛されており、容易に脱離すると考えられる。

以上のように、CO の吸着による O のドメインの圧縮が、反応サイト、反応経路の変化を引き起こ すことが明らかになった。当日は共吸着相の構造についても議論する。

¹ I. Nakai et al., J. Chem. Phys. 122, 134709 (2005).

² J. Méndez *et al.*, Phys. Rev. B **71**, 085409 (2005).

³ A. P. Seitsonen *et al.*, Surf. Sci. **468**, 176 (2000).