o-,m-,p-フルオロフェノール・アンモニアクラスターの 励起状態水素移動反応

(東工大資源研¹、パリ南大²、JST³、首都大理⁴、青学理工⁵) ○ 辻 典宏¹、石内 俊一^{1,3}、Dedonder-Lardeux Claude²、Jouvet Christophe²、 大極 光太⁵、橋本 健朗⁴、藤井 正明¹

【目的】フェノール・アンモニアクラスターは励起 状態水素移動反応 $PhOH^*-(NH_3)_n \rightarrow PhO++$

・NH $_4$ (NH $_3$) $_{n-1}$ (ESHT: Excited State Hydrogen Transfer) を起こし、アンモニウムクラスターラジカル・NH $_4$ (NH $_3$) $_{n-1}$ を生成する。この ESHT 反応は、理論から図 1 のような反応機構が提案されている [1] 。モノマーの S_1 状態は π π *状態だが、それよりも高エネルギー側にOH 結合に対して解離性の π σ *状態が存在する。 π σ *状態は、アンモニアのような極性溶媒の溶媒和により大きく安定化する

メタ、パラフルオロフェノール・アンモニアクラスター(o-,m-,p-FPhOH-(NH_3) $_n$)に着目し、フッ素置換基による π π *状態の安定化の度合いを系統的に変えることにより、ESHT の反応に及ぼす影響を調べた。

【実験】 2色共鳴多光子イオン化(REMPI: Resonance Enhanced Multi Photon Ionization)分光法の原理図を図 2 に示す。 FPhOH- $(NH_3)_n$ に励起光 (ν_1) を照射する。次にクラスターの S_1 の寿命より十分長い遅延時間(100ns)後にイオン化光(ν_2)を照射しイオンを検出する。フェノール・アンモニアクラスターの実験から ESHT 反応が起きると中性・ $NH_4(NH_3)_{n-1}$ が生じ、レーザーイオン化されたアンモニウムイオン NH_4^+

 $(NH_3)_{r=1}$ が検出されることがわかっている [2]。

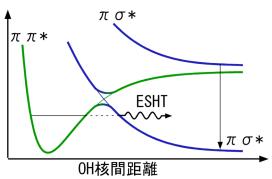


図1.ESHT反応の反応機構

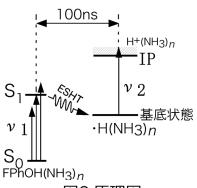
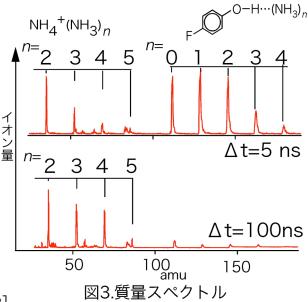



図2.原理図

また特定のサイズの $\mathrm{NH_{4^+}}(\mathrm{NH_3})_{r\cdot 1}$ をモニターしながら ν_1 を波長掃引すると、ESHT のアクションスペクトルが得られる。

【 結 果 と 考 察 】 図 3 に p-FPhOH-(NH₃)_nに対する2色 共鳴多光子イオン化質量スペ クトルを示す。 ν_1 と ν_2 の間の 遅延時間が 5ns の時は、 p-FPhOH-(NH₃)_n イオンおよ び NH₄+ (NH₃)_{n-1}イオンが共に 検出される。一方遅延時間を 100ns にすると p-FPhOH-(NH₃)_n イオンの強度は大幅に 減少したが、水素付加アンモニ アクラスターは同程度の強度 で観測された。以上の結果より p-FPhOH-(NH₃)_n に於いても S₁ から長寿命な・NH₄ (NH₃)_{n-1} の中性基底状態が生成し、 ESHT 反応を起こしていると 結論した。同様の結果が o-,m-FPhOH-(NH₃)_n でも得ら れ ESHT 反応が起きると結論 した。

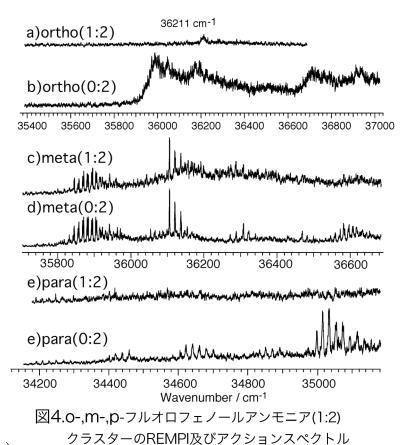


図 4 に o-,m-,p-FPhOH+-(NH₃)₂

イオンをモニターしながら ν_1 を波長掃引して得た REMPI スペクトル(1:2)と反応生成物 $\mathrm{NH_4^+}$ ($\mathrm{NH_3}$)をモニターしながら ν_1 を波長掃引したアクションスペクトル(0:2)を示す。 $\mathrm{m\text{-}FPhOH\text{-}}(\mathrm{NH_3})_2$ は REMPI スペクトル (c) でもアクションスペクトル (d) でも同じ位置 に明瞭なピークを示している。このことは、 $\mathrm{m\text{-}FPhOH\text{-}}(\mathrm{NH_3})_2$ では ESHT 反応速度がイオン 化速度に匹敵している事を意味する(図 5)。 $\mathrm{o\text{-}FPhOH\text{-}}(\mathrm{NH_3})_2$ の、REMPI スペクトル(a)は信

号がほとんどが現れないのに対し、アクションスペクトル IP (b)ではブロードな信号が現れている。p-FPhOH- $(NH_3)_2$ の REMPI スペクトル (e) は構造は見えないが、アクションスペクトル (f) は鋭い振電構造を示している。従って、o-,m-,p- FPhOH- $(NH_3)_2$ のイオン化速度が大まかに同じと仮定するなら、m-FPhOH- $(NH_3)_2$ の ESHT 反応が最も遅いと考えられる。また o-FPhOH- $(NH_3)_2$ アクションスペクトル(b)のみブロードであるが、この原因が ESHT 反応によるものであるなら、o-FPhOH- $(NH_3)_2$ の反応速度は、p-FPhOH- $(NH_3)_2$ より速いと考えられる。従って、 S_0 -FPhOH- $(NH_3)_2$ の場合、ESHT 反応速度は、m、p、そしてo-FPhOH- $(NH_3)_2$ の順番で速いと結論した。講演では n=3,4のアクションスペクトルも議論する。

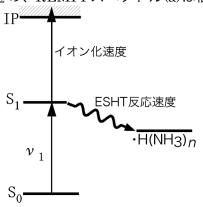


図5.イオン化速度とESHT 反応速度の競合過程

【考察文献】

- [1] A.L.Sobolewski et al. Phys.Chem.Chem.Phys **4**,1093(2002), W.Domcke et al. Science **302**.1693(2003)
- [2] G.Pino et al. Phys. Chem. Chem. Phys **2**,893(2000), S.Ishiuchi et al. J. Chem. Phys **117**, 7077(2002), S.Ishiuchi et al. J. Chem. Phys **117**,7083(2002), K.Daigoku et al. J. Chem. Phys **119**, 5149(2003)