1P166 スモッグチャンバー/FT-IRおよび真空紫外レーザ誘起蛍光法を 用いた代替フロンCH₃CHF₂の反応過程

(名大院理¹・名大STE研²・フォード自動車³) 〇竹谷文一^{1,2}, 中山智喜^{1,2}, 高橋けんし^{1,2}, 松見豊^{1,2}, A. Toft³, M. P. Sulbaek Andersen³, M. D. Hurley³, T. J. Wallington³

<u>はじめに</u>

成層圏オゾン破壊の原因となるため、フロン類(CFCs)は、1990年代の初めから使用や放出に関し て国際的に規制がなされてきた。現在は、その特性により近い化合物(代替フロン)が数多く使用さ れている。代替フロンの一つであるハイドロフルオロカーボン類は、オゾン層破壊能は0であり、 様々な物質が開発されてきた。その中のCH₃CHF₂ (1,1-Difluoroethane (HFC-152a))は、優れた冷 媒能力を持つものとして使用され始めている。本研究では、CH₃CHF₂の大気中への放出後の反応 過程について、詳細な情報(OHラジカル、CI原子との反応性および消滅過程、生成物収率)をスモ ッグチャンバー/FT-IRおよび真空紫外レーザ誘起蛍光(VUV-LIF)法を利用して得たので報告する。

<u>実験</u>

[スモッグチャンバー/FT-IR] 図1に実験 装置図を示す。室温条件下において, CH₃CHF₂と反応気体およびバッファーガ ス(Air:全圧700Torr)をパイレックス製ス モッグチャンバー(140L)内に貯留した。ブ ラックランプを照射することによるCl₂も しくはCH₃ONOの光解離反応によりCI原 子,OHラジカルを生成し,CH₃CHF₂と反 応させた。反応前,反応後にフーリエ変換 赤外分光(FT-IR)計(有効光路長27.2m)を 用いて反応物,生成物の観測を行った。

[真空紫外レーザ誘起蛍光法] 図2に実験 装置図を示す。反応セルにHCl(6 mTorr) とCH₃CHF₂およびバッファーの混合気体 を流し, ArFエキシマーレーザ(193 nm)照 射によるHClの光分解より,スピン-軌道基 底Cl(²P_{3/2}), 励起状態Cl*(²P_{1/2})の塩素原子 を生成した。2種類の塩素原子を真空紫外 レーザ誘起蛍光(VUV-LIF)法により検出し た。解離と検出レーザの遅延時間を変化さ せCl(²P_{3/2}), Cl*(²P_{1/2})の蛍光強度の時間変 化を観測した。

図1. 実験装置図(スモッグチャンバー/FT-IR)

図2. 実験装置図(真空紫外レーザ誘起蛍光法)

<u>結果および考察</u>

図3に真空紫外レーザ誘起蛍光法を用いて, バッファーCF₄, CH₃CHF₂分圧620 mTorr(全圧: 3 Torr) の条件下で観測したCl(²P_{3/2}), Cl*(²P_{1/2})の蛍光強度の経時変化を示す。Clの反応速度定数を決定するため, バッファーガスにCF₄ ($k_{Cl^*\rightarrow Cl} = 2.3 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹)を用い, Cl*を効率よくClに失活させた(図3右上)。Cl*の約95%以上が失活した後, Clの蛍光強度が単一指数減衰していることを

利用し、CIの減衰速度を求め、分圧依存性から CIとCH₃CHF₂との反応速度定数k_(CH3CHF2+CI)を

(2.54 ± 0.25) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ と決定した。さらに, Cl*(²P_{1/2})減衰速度の CH₃CHF₂分圧依存性からCl*のCH₃CHF₂によ る失活速度定数k_(CH3CHF2+Cl*)を決定した。

 $(2.21 \pm 0.21) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ また、スモッグチャンバー/FT-IRを用いて、反応速度定数が既知の化合物を利用した相対速 度法からCH₃CHF₂とCI原子、OHラジカルとの 反応速度定数を(単位: cm³ molecule⁻¹ s⁻¹)

 $k_{(CH3CHF2 + CI)} = (2.36 \pm 0.31) \times 10^{-13}$

 $k_{(CH3CHF2 + OH)} = (3.08 \pm 0.62) \times 10^{-14}$

図 3. Cl(²P_{3/2}), Cl*(²P_{1/2})の蛍光強度の時間変化 HCl: 6 mTorr, CH₃CHF₂: 620 mTorr, 全圧: 3 Torr(CF₄)

(a)

と決定した。塩素原子との反応速度定数に関して,真空紫外レーザ誘起蛍光法,スモッグチャン バー/FT-IRを用いた結果は誤差内でよい一致を示した。

塩素原子,OHラジカルとも以下に示す2つの過程から反応が進行するが,

 $CH_3CHF_2 + CI(OH)$

 $CH_3CHF_2 + CI(OH)$

 $\rightarrow \qquad CH_3CF_2 + HCI(H_2O)$

反応生成物の詳細な濃度依存から, CH₃CHF₂ + Clは99.2%が(a)の過程, 0.8%が(b)の過程で反応が進行するこ とが明らかとなった。さらに,OHラジ カルとの反応では、>75%が過程(a), <25%が過程(b)であることも明らかと なった。また、空気中でCI原子と CH₃CHF₂の反応の生成物は、(97±5)% がCOF₂であることがわかった。

図4にCH₃CHF₂:8.1 mTorr, NO:56 mTorr, Cl₂:260 mTorrにおいて観測し た赤外吸収スペクトルを示す。反応前 にNOの吸収のみが観測されたエネル ギー領域に新たな吸収が現れた(図4C)。 得られたIRスペクトルの帰属により, 大気中におけるCH₃CHF₂の反応生成物 はCH₃COF, COF₂, CH₃CF₂ONOである ことを明らかにした。また,これらの 生成物の収率にNO濃度依存があるこ とを見出した。この事実は,生成過程 の反応中間体に励起分子が存在してい ることを示唆している。講演では, CH₃CHF₂の反応過程についてさらに詳 細に検討する。

