1P131

Ne ¹²C¹⁸O₂の赤外ダイオードレーザー分光

(城西大理) 福田 真一, 紺野 東一, 尾崎 裕

<序> 希ガス(Rg)と¹²C¹⁶O₂とのvan der Waals錯体の高分解能赤外分光はRandallらによって報告されている。¹⁾ 我々はこれまで同位体種である¹²C¹⁸O₂を用いてvan der Waals錯体Ar ¹²C¹⁸O₂²⁾, Kr ¹²C¹⁸O₂³⁾, Xe ¹²C¹⁸O₂⁴⁾のパルスジェットダイオードレーザー分光を¹²C¹⁸O₂の反対称伸縮振動(3)領域において行い,分子内及び分子間ポテンシャルに対する¹⁶O ¹⁸O同位体効果を調べてきた.今回, Ne ¹²C¹⁸O₂の測定を行ったのでこれまでの結果とあわせて報告する.

<実験> 分光装置はこれまでと同様のものを用い,光源にはPb塩液体窒素冷却赤外ダイオードレーザー(Laser components),検出には液体窒素冷却InSb(Judson)検出器を使用した.真空チャンバー内のパルスノズルはスリット型(12.5×0.2 mm²)を使用した.¹²C¹⁸O₂(1%)+Ne(99%)の混合ガスを背圧1 atmで真空チャンバー内に噴出させて錯体を生成し,ノズル下流に設置したミラーで赤外光を多重反射(10 往復)させた.¹²C¹⁸O₂の反対称伸縮振動(3)領域である 2310-2316 cm⁻¹において,CMOSアナログスイッチを用い,試料噴出時及びBack groundのスペクトルをそれぞれディジタルオシロスコープで 1024 回積算した.また,測定中は光源から真空チャンバーまでの赤外光路中に存在する大気中のCO₂の影響を乾燥窒素ガスパージにより取り除いた.

<分子定数と構造>測定スペクトルの一例をFig. 1.に示す Ne ¹²C¹⁸O₂の^RQ₀(*J*) , *J*=1~5 , ^PR₀(0) , PR₂(4)がみられる.図中のモノマー¹²C¹⁸O₂のピークは,横軸波数の校正に用いた.その他の比較 的小さいピークはほとんどダイマー(¹²C¹⁸O₂)₂のピークであり,三量体以上の錯体のピークは確認 できなかった.

測定されたスペクトルは近偏長対称コマに特徴的なものであり, Ne ¹²C¹⁸O₂もこれまでに報告した Rg CO₂と同様のT型平面構造(*C*₂₀)をとると仮定でき,構造から慣性モーメントテンソルを計算し,基底 状態の回転定数*A*",*B*",*C*"を予測した。励起状態の回転定数*A*',*B*',*C*"は,Ne ¹²C¹⁶O₂の回転定数¹か ら予測した.¹²C¹⁶O₂,¹²C¹⁸O₂,Ne ¹²C¹⁶O₂のバンドオリジン ₀からNe ¹²C¹⁸O₂の ₀を予測し,Watson のS reductionハミルトニアンを用いてスペクトルを予想した.予想したスペクトルを実測スペクトルと 比較すると,差がみられたので実測を再現するように試行錯 誤的に分子定数を変化させて計算スペクトルが実測スペクト ルをほぼ再現するようにした.この操作を繰り返し,帰属を 行った。全測定領域で同様の方法により帰属を行い,最終的 に 63 本のピークを帰属し,再びWatsonのS reduction八ミ ルトニアンを用いて最小二乗法により,Ne $^{12}C^{18}O_2$ の分子定 数を決めた.結果をTable.1.に示す(**残差**:1 = 0.0007 cm⁻¹). 遠心力歪定数 D_f , D_{IX} はNe $^{12}C^{16}O_2$ の値(D_f = 0.0589 MHz, D_{IX} = 2.631 MHz¹)に近くなり,Ne $^{12}C^{16}O_2$ では報告のな い D_{IX} を決めることができた.また,得られた回転定数より導 かれる振動平均構造パラメーターは,基底状態ではNe C距 離R'' = 3.2852(7) , NeCO角度 '' = 81.88(4) °となり, 励起状態ではR' = 3.2896(8) , '= 81.95(3) °となった. この角度 は,T型平衡構造(C_2)での = 90 °からの零点変 _

Table. 1. Ne-12C18O2の分子定数

0 / cm-1	2314.19195(19)		
<i>A'</i> / MHz	10618.1(22)		
<i>B</i> ′	3363.77(83)		
C'	2505.27(94)		
<i>A</i> "	10707.0(27)		
<i>B"</i>	3366.84(90)		
С"	2515.25(86)		
D_J	0.0322(87)		
Длк	2.401(45)		
D_K	- 1.88(16)		

角振動波動関数の広がりによるものである.つまり,波動関数が基底状態では 16.28 °, 励起状態では 16.10 ° 広がっていることになる.

<パンドオリジンのシフト> CO2のバンドオリジンは,錯体形成でRgの影響によりシフトする.シフトのに対する¹⁶O ¹⁸O同位体効果の比較として, Rg ¹²C¹⁶O²¹, Rg ¹²C¹⁸O²それぞれの 0を Table. 2.に示した. 0(¹⁸O)は 0(¹⁶O)¹と同様にAr ¹²C¹⁸O², Kr ¹²C¹⁸O², Xe ¹²C¹⁸O²では

Table. 2. Rg-12C16O21), Rg-12C18O2のバンドオリジンのシフト

	Ne CO ₂	Ar CO ₂	Kr CO ₂	Xe CO ₂
0 ⁽¹⁶ O)/ cm ⁻¹ 1)	0.1363(1)	- 0.4701(1)	- 0.8841(1)	- 1.4713(1)
₀ (18O)/ cm ⁻¹	0.1432(2)	- 0.4567(3)	- 0.8651(3)	- 1.4515(1)

redシフト, Ne ¹²C¹⁸O₂ではblueシフト になった.これまでの報告と同様にシフト o(16O))を考えると, Xeか 0⁽¹⁸O)/ 比(らNeの方向に直線的に小さくなると予想し てきたが、これまでとは逆にNe 12C18O2で は変則的に大きくなることがわかり(Fig. 2.), 予想とは違った.そこで今回,新しい比較と して¹⁶O ¹⁸O同位体効果によるシフト差 o(18O) o(16O))を調べたところ,シ (フト差は滑らかに変化することがわかり、シ フトそのものの方向(red blue)に関係なく正 の値,つまり,Rg ¹²C¹⁸O₂の ₀はRg 1²C¹⁶O₂の 0より常に高波数側になること がわかった.さらにFig. 2.を見るとシフト差

はNeからXeになるにつれ,一定値に収束するようにみえる.

参考文献

1) Randall et al., Faraday Discuss. Chem. Soc., 85, 13 (1988). 2) Y.Ozaki et al., Chem. Phys. Lett. 335, 188 (2001). 3) 紺野ら,分子構造総合討論会 広島 (2004) 1P050. 4) 福田ら,日本化学 会第 85 回春季年会 横浜 (2005) 1G2 - 12.