1P060

電子相関計算に適した基底関数系の開発

(橫浜市大院総合理^{*}, JST PRESTO^{**}) 清水直斗^{*}, 立川仁典^{*,**}

【序】従来の分子軌道計算で一般的に用いられている基底関数系では、関数中心は原子核上に固定されてお り、軌道指数は基底状態の単一原子に対して Hartree-Fock (HF) 法により最適化された値を用いている。しか しながら電子相関を考慮した post-HF 法においては、それぞれの手法に最適な基底関数系を用いることで、よ り最適な波動関数、物理量が得られると期待される。さらには、小さい分子系に対して最適化された基底関数 を、その分子に類似した官能基や置換基の基底関数として用いることにより、比較的大きな分子系に対しても、 少ない基底関数でより最適な結果が得られると期待される。そこで本研究では、いくつかの分子に対し、特に MP2 法および MCSCF (CASSCF) 法における基底関数パラメータ(軌道指数)の最適化を行い、基底状態およ び励起状態における最適な基底関数系を報告する。

【理論】閉殻系の基底関数パラメータ (a) に対する MP2 エネルギー微分表現は、MO 表示で

$$\frac{\partial E_{\text{MP2}}^{\text{corr}}}{\partial \alpha} = 2 \sum_{ab}^{\text{d.o.}} \sum_{rs}^{\text{virt.}} \frac{2(ar|bs) - (as|br)}{\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s} \frac{\partial (ar|bs)}{\partial \alpha} - \sum_{ab}^{\text{d.o.}} \sum_{rs}^{\text{virt.}} \frac{(ar|bs)\{2(ar|bs) - (as|br)\}}{(\varepsilon_a + \varepsilon_b - \varepsilon_r - \varepsilon_s)^2} \left(\frac{\partial \varepsilon_a}{\partial \alpha} + \frac{\partial \varepsilon_b}{\partial \alpha} - \frac{\partial \varepsilon_r}{\partial \alpha} - \frac{\partial \varepsilon_s}{\partial \alpha}\right)$$
(1)

である。ここで各微分表式は、Coupled Perturbed HF (CPHF) 方程式 $\left(\frac{\partial C_{\mu i}}{\partial \alpha} = \sum_{m} U_{m i}^{\alpha} C_{\mu m}\right)$ から得られる $U_{i j}^{\alpha}$ を用いて

$$\frac{\partial (ij|kl)}{\partial \alpha} = (ij|kl)^{\alpha} + \sum_{m}^{MO} \left[U_{mi}^{\alpha}(mj|kl) + U_{mj}^{\alpha}(im|kl) + U_{mk}^{\alpha}(ij|ml) + U_{ml}^{\alpha}(ij|km) \right]$$
(2)

$$\frac{\partial \varepsilon_i}{\partial \alpha} = F_{ii}^{\alpha} - S_{ii}^{\alpha} \varepsilon_i - \sum_{ab}^{d.o.} S_{ab}^{\alpha} \left[2(ii|ba) - (ia|ib) \right] + \sum_{a}^{d.o.} \sum_{r}^{\text{virt.}} U_{ra}^{\alpha} \left[4(ii|ra) - (ir|ia) - (ia|ir) \right]$$
(3)

と表現される。一方、MCSCF エネルギーの微分表現は、AO 表示で

$$\frac{\partial E_{\text{elec}}}{\partial \alpha} = \sum_{\mu\nu}^{\text{AO}} \gamma_{\mu\nu} \frac{\partial h_{\mu\nu}}{\partial \alpha} + \sum_{\mu\nu\rho\sigma}^{\text{AO}} \Gamma_{\mu\nu\rho\sigma} \frac{\partial (\mu\nu|\rho\sigma)}{\partial \alpha} - \sum_{\mu\nu}^{\text{AO}} W_{\mu\nu} \frac{\partial S_{\mu\nu}}{\partial \alpha}$$
(4)

である。ここで、 $\gamma_{\mu\nu} \geq \Gamma_{\mu\nu\rho\sigma}$ はそれぞれ (AO 表示の)1 電子および2 電子縮約密度行列であり、また $W_{\mu\nu}$ は "energy weighted" density matrix である。

【計算方法】H₂、LiH、CH₄、C₂H₆、C₂H₄、C₂H₂の各分子に対し、HF 法、MP2 法、および CASSCF 法を用い て、構造・軌道指数最適化計算を行った。基底関数系には非短縮基底系 [6s3p/3s]、[10s4p/4s]、[10s4p1d/4s1p] を用いた。計算には、基底関数パラメータに対する MP2 および CASSCF のエネルギー微分計算を実装した完 全変分型分子軌道法 (Fully variational molecular orbital; FVMO) 法 [1] プログラム FVOPT を用いている。

【結果・考察】 CH_4 、 C_2H_6 、 C_2H_4 、 C_2H_2 における HF 法および MP2 法で最適化したエネルギーと軌道指数を Table 1 に示す。[10s4p/4s] 基底を用いた MP2 計算では、軌道指数の最適化により、H 原子の大部分の軌道指数が HF 法の場合と比べて若干小さくなる(軌道がやや広がる)傾向が見られる。C 原子の p 型関数では、MP2 の場合の方が軌道指数が大きくなる傾向にある。これは、基底配置だけでなく励起配置も考慮されるため に、核間の結合距離が伸びたことが原因の 1 つと考えられる。

分極関数を含めた [10s4p1d/4s1p] 基底での MP2 計算では、計算された全ての分子で、H 原子の p 型関数の 軌道指数は HF 法と比べて小さくなっている。これは、励起配置の考慮により、占有軌道だけでなく、 軌道 を含めた仮想軌道も最適化されたためである。 CH_4 、 C_2H_6 、 C_2H_4 、 C_2H_2 における同一原子間の違いを見ると、HF 法、MP2 法の場合ともに、C 原子の s 関数および p 関数の軌道指数は CH_4 、 C_2H_6 、 C_2H_4 、 C_2H_2 の順に軌道指数が小さくなる傾向にあり、一方、H 原子の軌道指数は同じ順に軌道指数が大きくなる傾向にある。これは C 原子に置かれた基底関数が広がること で 軌道を柔軟に表現したためと考えられる。

次に CASSCF 法を用いた H₂ 分子に対する計算では、[3s] および [4s] 基底を用いた場合、s 関数の軌道指数に関しては大きな変化が見られなかった。分極関数を含む [4s1p] 基底では、HF から CASSCF(2,4) まででは分極関数の軌道指数が $1.0 \sim 1.1$ 程度であったが、CASSCF(2,6) および Full CI では約 0.7 まで小さくなった。これは、CASSCF(2,4) までは p 関数から構成される 軌道が active space に含まれていないのに対し、CASSCF(2,6) や Full CI では 軌道が active space に含まれためである。

より詳細な結果は当日報告する。

Table 1. Optimized exponents for CH_4 , C_2H_6 , C_2H_4 and C_2H_2 molecules by HF and MP2 schemes with unrestricted uncontracted [10s4p/4s] and [10s4p1d/4s1p] basis sets.

		CH ₄		C ₂ H ₆		C ₂ H ₄		C ₂ H ₂	
		HF	MP2	HF	MP2	HF	MP2	HF	MP2
[10s4p/4s]									
Energy	y (a.u.)	-40.1883139	-40.3324970	-79.2120132	-79.4890245	-78.0177378	-78.2854322	-76.8076336	-77.0769233
Exp.	C s	15077.9486	12610.5311	14707.7038	10879.3507	14651.1965	10015.5233	14410.3360	9656.1501
		2260.3322	1891.3424	2204.9370	1631.9096	2196.4144	1502.4438	2160.3533	1448.5783
		514.4552	431.0101	501.8678	371.8780	499.9172	342.3757	491.7302	330.1002
		145.6532	122.3815	142.1090	105.5611	141.5511	97.1674	139.2520	93.6765
		47.4122	40.0212	46.2771	34.4685	46.0885	31.6928	45.3593	30.5402
		16.9481	14.3759	16.5612	12.3321	16.4862	11.3039	16.2462	10.8806
		6.4566	5.5238	6.3292	4.7014	6.2943	4.2721	6.2246	4.0999
		2.5276	2.1989	2.4918	1.8201	2.4744	1.5649	2.4613	1.4556
		0.5137	0.5586	0.4926	0.5161	0.5048	0.4973	0.5338	0.5241
		0.1966	0.2155	0.1803	0.1897	0.1749	0.1647	0.1655	0.1608
	р	12.5941	15.9038	11.8775	14.8694	10.8688	14.1466	10.3515	14.0152
		2.7078	3.0671	2.5438	2.8265	2.3223	2.6627	2.2230	2.6434
		0.7157	0.7806	0.6706	0.7160	0.6052	0.6647	0.5978	0.6658
		0.2224	0.2345	0.2060	0.2098	0.1623	0.1756	0.1617	0.1737
	H s	20.1881	16.3649	21.0453	16.3367	21.9643	18.1616	23.1085	21.4300
		3.0714	2.5919	3.2018	2.6082	3.3314	2.8770	3.5197	3.3449
		0.6608	0.6184	0.6797	0.6245	0.6977	0.6589	0.7614	0.7451
		0.1356	0.1279	0.1444	0.1347	0.1692	0.1569	0.2069	0.1823
[10s4p	o1d/4s1p	[]							
Energy	y (a.u.)	-40.2089387	-40.4217222	-79.2513058	-79.6532556	-78.0516834	-78.4233940	-76.8385245	-77.1891126
Exp.	C s	24079.1974	21270.9874	22069.8933	19942.1986	21891.4028	19069.9232	19767.3069	19436.0861
1		3608.5867	3189.9106	3307.6406	2989.9083	3280.8769	2859,1831	2962.7465	2914.0530
		821.2583	727.0059	752.7707	681.3026	746.6752	651.5382	674.2813	664.0175
		232.5210	206.4896	213.1251	193.4890	211.3983	185.0535	190.8983	188.5749
		75,7470	67.6423	69.4177	63.3768	68.8534	60.6273	62,1701	61.7584
		27.1727	24.4296	24.8855	22.8803	24.6818	21.8985	22.2810	22.2871
		10.3895	9.4186	9,5070	8.8188	9.4288	8.4522	8.5310	8.5847
		4.1009	3.7643	3.7509	3.5186	3.7205	3.3743	3.4054	3.4184
		0.6896	1.3454	0.5977	1.1791	0.5597	0.5096	0.4641	0.4899
		0.2311	0.2194	0.2134	0.2122	0.1994	0.1764	0.1526	0.1694
	p	14.0203	16.9909	13.0639	16.0422	10.5187	14.5510	10.1302	14.4480
	Г	3.0462	3.3372	2.8260	3.1066	2.2490	2,7523	2.1639	2.7426
		0.8386	0.8651	0.7727	0.8015	0.6091	0.6979	0.6029	0.7050
		0.2461	0.2448	0.2307	0.2270	0.1643	0.1806	0.1599	0.1794
	d	0.9900	0.9220	0.8652	0.8388	0.8366	0.7470	0.7599	0.7500
	Нs	16.8489	13.5259	18.2819	13.6990	19.7123	17.4028	26.8465	16.9134
	0	2.5485	2.1050	2.7695	2.1429	2.9988	2.7189	4.0823	2.6354
		0.5832	0.5072	0.6279	0.5205	0.6656	0.6251	0.8950	0.6103
		0.1314	0.1203	0.1442	0.1274	0.1748	0.1615	0.2795	0.1560
	n	1.0191	0.7482	1.0778	0.7638	1.0130	0.8317	0.9583	0.8044
	Р	1.0171	0.7 102	1.0770	0.7050	1.0150	0.0517	0.7505	0.0044

[1] Tachikawa M., Taneda K., and Mori K., Int. J. Quantum Chem., 75, 497 (1999)