4P122 ヘテロ原子を含むケイ素環状化合物の分解反応の ab initio 分子軌道計算に よる研究

【はじめに】ヘテロ原子を含むケイ素の環状 化合物(SinGe, SinC, SinN and SinO)の物性の 特徴を系統的明らかにすることを目標とし て、これら一連の化合物の分解反応に関する 分子軌道計算を行なった。今回はケイ素の環 状化合物、X(SiH₂)nのうち、XがCH₂、NH、 NCH₃、O、SiH₂について元素の周期及び孤 立電子対の有無に着目し、その基底及び励起 電子状態における分解反応の詳細について 調べた。

Figure1-1. 実験から予想される四員環、X(SiH₂)₃の分解機構^[1]

Figure1-2. 基底状態における四員環、X(SiH₂)₃の分解機構

(群馬大院工) 根川岳之,工藤貴子

【計算方法】構造最適化計算は active space に四員環の四つの辺の結合性と反結合性軌 道を考慮した CASSCF(8,8)を用い、さらに、 O(SiH₂)₃と NCH₃(SiH₂)₃についてはそれぞ れ lone-pair を加えた CASSCF(12,12)と CASS CF(10,10)を用いた。基底関数は 6-311+G(2df, 2p)、6-31G(d)を用いた。また、反応経路の解 析には基準振動解析と IRC(Intrinsic Reaction Coordinate)を用いた。プログラムは GAMESS を用いた。

【計算結果から得られる情報】一重項の基底 状態においては、四員環から三員環への分解 は段階的に二つの遷移状態、TS1とTS2を経 由することがわかった。以下にその詳細を示 す。

(1) 四員環→TS1→Diradical への経路

X = SiH₂ では二つの遷移状態、SiH₂(a)、 SiH₂(b) が求まった。X = CH₂、O、SiH₂(a)、 NH、NCH₃ではSi(1)-Si(2)が僅かに伸た(Si-Si 結合の切断)後、Silyleneの回転等によって Diradicalの不対電子の形成が見られるが、X = SiH₂(b)では対称性をほぼ C_s に保ったまま、 Si(1)-Si(3)とSi(2)-Si(4)がほぼ同時に伸びて おり、Figure2-1に示すように一時的に二つの Disileneが生成した様な構造となる。

TS1 の構造

X = CH₂、O、SiH₂(a)では、およそ開環生 成物である Diradical の *trans* 体に近く、X = NH、NCH₃ では *cis* 体に近い構造が得られ た。これらは、Diradical の構造に近いこと がわかった。しかし、SiH₂(b)では、生成物 である Disilene に近い構造が得られた。代 表例を Figure2-1 に示す。そこで、 E_{a1} を比 較したところ、X = SiH₂(b)の場合が最も大 きく、構造が生成物に近いことから、 Hammond の仮説に即しているものと考え られる。それに対し、X = Oについては、 最も開環反応が起こりやすく、歪みエネル ギー^[2]が最も大きいことと一致している。

 $X = SiH_2(b)$

Figure 2-1. Structure of TS1 at CASSCF(8,8)/6-31 G(d) level.

Table2-1. Activation energy $(E_{a1}/\text{kcal mol}^{-1})$ at MRM P2//CASSCF(8,8)/6-31G(d)(CASSCF(8,8)/6-31G(d)) level.

		Х						
	CH ₂	NH	NCH ₃	0	SiH ₂ (a)	SiH ₂ (b)		
E_{a1}	52.7	54.1	53.4	50.7	53.7	59.3		
	(48.9)	(518)	(67.7)	(46.0)	(49.8)	(67.4)		

(2) diradical→TS2→三員環への経路

この場合は、三員環の Si-Si 結合の生 成と Diradical の Si-Si 結合の切断が協奏 的である。更に、X = CH₂についてはさ らに Si-C 結合が一時的に伸びている。 また、X=SiH₂については二段階(Silylene の向きが異なる二つの遷移状態、TS2-1 とTS2-2を経由)で反応が進行している。 X=CH₂

G(d) level.

Table2-2. Activation energy $(E_{a2}/\text{kcal mol}^{-1})$ at MRM P2//CASSCF(8,8)/6-31G(d)(CASSCF(8,8)/6-31G(d)) level.

	Х							
	CH_2	NH	NCH ₃	0	SiH ₂	SiH ₂		
					(1)	(2)		
E_{a2}	20.5	20.6	13.1	25.0	39.5	5.0		
	(32.4)	(32.9)	(38.3)	(41.3)	(37.1)	(8.0)		
				((1) E_{a2-1}	$(2) E_{a2}$		

【まとめ】

ケイ素四員環の分解機構は、ヘテロ原子の 違いにより異なることがわかった。

現在はさらに、五員環の分解機構について も研究を進めている。

【参考文献】

[1] Watanabe, H. et al. Eur. J. Inorg. Chem., 2002, 1772.

[2] Kudo, T.; Akiba, S.; Kondo, Y.; Watanabe,
H.; Morokuma, K.; Vreven, T. *Organometallics*, **2003**, *22*, 4721.

[3] Liebman, J. F.; Skancke, P. N. *Int. J. Quantum Chem.* **1996**, *58*, 707.