4A08 (BDA-TTP)₂X (X = TaF₆, FeBr₄, GaBr₄)の構造と物性

(兵庫県立大院理¹・都立大院理²) 山田順一¹, ○藤本和也¹, 圷 弘樹¹, 中辻慎一¹, 西川浩之², 菊地耕一²

【序】我々は、BDA-TTP がオクタヘドラルなアニオンと常圧超伝導体 β -(BDA-TTP)₂X (X = SbF₆, AsF₆, PF₆)を形成することを発見している[1]。また、約 8.5 K で反強磁性体となる β -(BDA-TTP)₂FeCl₄ [2]とその同型構造である GaCl₄ 塩は、常圧下では金属 - 絶縁体 (MI) 転移 を示すが圧力下で超伝導性を発現することを見出している[3,4]。さらに、 β -(BDA-TTP)₂MCl₄ (M = Fe, Ga)の圧力下での磁気抵抗測定の比較から、FeCl₄ 塩 の輸送現象には π -d 相互作用が関与していることが示唆され た[5]。これらの結果を踏まえて、今回、BDA-TTP の TaF₆、FeBr₄、 GaBr₄ 塩の構造と物性を明らかにしたので発表する。

【結果】TaF₆塩は、溶媒として 1,1,2-トリクロロエタンを用いて *n*-Bu₄NTaF₆ との制御電流 電解法によって作製した。また、MBr₄ (M = Fe, Ga)塩は *o*-C₆H₄Cl₂/5% acetone あるいは *m*-C₆H₄Cl₂/15% acetone 中、Et₄NMBr₄ (M = Fe, Ga)との制御電流電解法によって作製した。各塩 の組成比と構造は X 線構造解析により決定した。

(BDA-TTP)₂TaF₆の構造は常圧超伝導体 β -(BDA-TTP)₂X (X = SbF₆, AsF₆, PF₆)と同型であり、 これらの超伝導体と同様な重なり積分値(Fig. 1(a))と二次元的なフェルミ面が計算された。 それにもかかわらず、TaF₆塩は常圧下約 45 K で MI 転移を示した(Fig. 1(b))。

Fig. 1 (a) Donor arrangement in β -(BDA-TTP)₂TaF₆. Intermolecular overlap integrals *c*, *p*1, *p*2, *q*1and *q*2 are -0.51, 14.7, 9.46, 8.65 and 9.48 × 10⁻³, respectively. (b) Temperature dependence of the relative resistivities for two different β -(BDA-TTP)₂TaF₆ samples. The σ_{rt} 's of samples #1 and #2 are 1.4×10^{-2} and 2.3×10^{-3} S cm⁻¹, respectively.

(BDA-TTP)₂MBr₄ (M = Fe, Ga)は β -(BDA-TTP)₂MCl₄ (M = Fe, Ga)と同型構造であった。FeBr₄ 塩におけるそれぞれの重なり積分値(Fig. 2(a))は、FeCl₄塩における相当する値よりわずか に小さかったが、GaBr₄塩ではGaCl₄塩と同様な重なり積分値が計算された(Fig. 2(b))。

Fig. 2 (a) Donor arrangement in β -(BDA-TTP)₂FeBr₄. Intermolecular overlap integrals c1, c2, p1, p2, p3, q1, q2 and q3 are 14.1, 12.9, 1.72, -6.92, 2.97, 6.14, -5.54 and 5.19 × 10⁻³, respectively. Short intermolecular S^{...}S contacts (< 3.70 Å) are drawn by broken lines. (b) Donor arrangement in β -(BDA-TTP)₂GaBr₄. Intermolecular overlap c1, c2, p1, p2, p3, q1, q2 and q3 are 15.2, 12.9, 2.02, -6.47, 2.87, 6.04, -5.45 and 5.41 × 10⁻³, respectively. respectively. Broken lines indicate short S^{...}S contacts (< 3.70 Å).

FeBr₄塩の室温伝導度 (σ_{r}) は8 × 10⁻¹ S cm⁻¹であり、その電気抵抗は約 170 K までほぼ一 定で ($E_a = 2 \text{ meV}$)、その後急激に増加した (Fig. 3(a))。また、磁気的挙動は 20–300 K の範 囲では一次元ハイゼンベルグモデル (J = -23.6 K) によって再現され (Fig. 3(b))、約 9.5 K で反強磁性的秩序を示した (Fig. 3(c))。一方、GaBr₄塩 ($\sigma_{r} = 12-45$ S cm⁻¹) は 170–180 K 付 近で MI 転移を示した。

Fig. 3 (a) Temperature dependence of the relative resistivity for β -(BDA-TTP)₂FeBr₄ in the cooling and heating processes. (b) Temperature dependence of the susceptibility of β -(BDA-TTP)₂FeBr₄. The dotted line represents the theoretical curve for the 1D antiferromagnetic Heisenberg model (J = -23.6 K). (c) Magnetic anisotropy of β -(BDA-TTP)₂FeBr₄ in magnetic fields approximately parallel to the *a*-, *b*- and *c*-axes.

【参考文献】

[1] J. Am. Chem. Soc., 2001, 123, 4174–4180; J. Phys. Soc. Jpn., 2002, 71, 717–720; Phys. Rev. B, 2003, 67, 174511.
[2] Chem. Commun., 2001, 2538–2539; J. Solid State Chem., 2002, 168, 503–508.
[3] Chem. Commun., 2003, 2230–2231.
[4] J. Phys. IV France, 2004, 114, 297–299.
[5] Phys. Rev. B, in press.