3P122 アームチェア型ナノチューブにおける許容遷移の偏光特性に関する 理論的研究

(信州大繊維) 野村泰志,藤田紘也,成田 進,渋谷泰一

【序】単層のカーボンナノチューブ(single-wall nanotube: SWNT)の電子状態に関しては、 これまで、実験的にも理論的にも数多くの研究がなされている。SWNT は、その筒部分の構 造(グラフェンシートの巻かれ方)を示すキラルベクトル(通常、二つの整数の組(*N,M*)の ように表記される)により特徴づけられる。(*N,N*)で特徴づけられる SWNT は、アームチェ ア型と呼ばれ、サイクリックに連なった *N* 個の p-phenylene 骨格を基本構造として持ち、 典型的な SWNT の一群として、種々の物性が盛んに調べられている。例えば、その電気伝 導性については、1990 年代の始めの頃から、(様々な他の種類の SWNT に対しても)詳細 に検討されている。

SWNT の光学応答性もまた興味深いテーマの一つである。Liang らは、いくつかの種類の SWNT に対して、PM3 レベルでの計算を行い、低エネルギー領域における(電気双極子) 許容遷移においては、 - *遷移が主要な寄与をすることを示した[1]。また、我々は以前、両 端が閉じたアームチェア型 (5,5)-SWNT (C_{60+10n})の許容遷移を、 CNDO/S 近似に基づいた Tamm-Dancoff approximation (TDA)計算により評価し、そのチューブ長依存性を検討すると ともに、それら $C_{60+10nc}$ の各々の最低低許容遷移は、二つの一電子励起[HOMO LUMO+1]と [HOMO-1 LUMO]によるものであることを示した[2]。

本研究では、両端が開いたアームチェア型(N,N)-SWNT($C_{4N+2Nn}H_{4N}$ T(N;n))の許容遷移を、 CNDO/S-TDA 計算に基づき理論的に検討することを目的とする。これらの SWNT は、 C_{N} -回 転軸を持ち、 D_{Nh} または D_{Nd} 対称性を有するので、許容遷移は、 C_{N} -回転軸に平行な遷移(以 下、z-遷移)と垂直な遷移((x,y)-遷移)の二種類に分けられる。この二種類の遷移各々につ いて、SWNTのチューブ長および口径に対する依存性を検討する。さらに、主要な許容遷移 を CNDO/S-TDA データにより解析し、それらに寄与する電子励起配置およびその励起に関 わる分子軌道の性質についての検討も行う。

【計算方法】 Gaussian 98 を用いて、AM1 レベルでの構造最適化を行い、得られた最適化構造に対して、CNDO/S 近似による分子軌道計算、さらに、TDA 計算を行い、アームチェア型SWNT 分子の励起状態の励起エネルギーおよび波動関数を求める。ここでは、低励起エネルギーの許容遷移に注目することとし、TDA 計算は HOMO-LUMO ギャップ周辺の MO 空間に対して行うものとする。具体的には、約 20 個ずつの占有および非占有 MO を考慮した。

【結果と考察】 今回の CNDO/S-MO 計算で得られたアームチェア型 SWNT 分子 T(*N*;*n*) (*N*=5-8; *n*=0-11)の HOMO-LUMO ギャップエネルギーは、全ての *N* に対して、 *n*=1,4,…のところで極小となりながら、*n* とともに減少していくことがわかった。この *n* が 3 ごとの周期的な変化は、両端が閉じたアームチェア型(5,5)-SWNT (C_{60+10n})においても 見られたものである。我々は以前、 C_{60+10n} において基本構造であるサイクリックに連なった 5 個の p-phenylene 骨格 (C_{30})上に -電子共役系が局在する傾向がその周期性の原因とな っていることを指摘した[3]が、今回の SWNT 分子 T(*N*;*n*)においても同様の共役系の局在性

により周期性が現れることが推測される。

Table 2 Excitation energies (in ev) of the lowest z-and (x,y)-transitions								
	T(5; <i>n</i>)		T(6; <i>n</i>)		T(7; <i>n</i>)		T(8; <i>n</i>)	
n	Z.	(<i>x</i> , <i>y</i>)	z	(<i>x</i> , <i>y</i>)	z.	(<i>x</i> , <i>y</i>)	z	(<i>x</i> , <i>y</i>)
0	7.04	4.52	7.29	4.16	7.48	3.89	7.61	3.67
1	3.78	3.29	3.96	3.38	4.08	3.40	4.17	3.39
2	2.87	3.47	3.03	3.55	3.14	3.59	3.20	3.61
3	2.30	3.18	2.43	3.02	2.47	2.84	2.53	2.69
4	2.61	2.75	2.79	2.82	2.90	2.80	2.96	2.76
5	2.23	2.99	2.37	3.00	2.46	2.97	2.55	2.99
6	1.91	2.89	2.02	2.72	2.09	2.55	2.16	2.41
7	2.05	2.47	2.17	2.49	2.28	2.47	2.34	2.43
8	1.86	2.73	1.96	2.72	2.05	2.66	2.07	2.57
9	1.67	2.73	1.74	2.57	1.81	2.41	1.87	2.27
10	1.02	2.01	1.82	2.35	1.89	2.32	1.93	2.24
11	1.64	2.57	1.70	2.55	1.77	2.47	1.81	2.38

Table 2 に、T(N;n)分子各々に対する最低 *z*-遷移と(*x*,*y*)-遷移の励起エネルギーを示す。 Table 2 Excitation energies (in eV) of the lowest *z*-and (*x*,*y*)-transitions

これを見ると、n が小さい場合のいくつかの例外を除くと、最低 z-遷移の方がより低エネ ルギー側に位置していることがわかる。次に、励起エネルギーの n(チューブ長)、N(口 径)に対する依存性を見てみると、z-と(x,y)-の両遷移とも、n の増加に対して振動しながら 減少していくのが明らかであるのに対し、N に対してはそれほどはっきりした依存性は見ら れない。

ここで、それら最低 *z*-遷移の CNDO/S-TDA データを解析すると、数少ない例外を除き、 非縮重の二つの占有 MO (HOMO を含む)と二つの非占有 MO (LUMO を含む)がその遷移 に関与していることがわかった。そのため、その励起エネルギーは、HOMO-LUMO ギャッ プを反映した *n* 依存性を示すものと推測される。また、最低*z*-遷移の振動子強度は小さいが、 最低 *z*-遷移に関与する四つの MO は、比較的大きい振動子強度を持つ二番目の *z*-遷移にも主 要な寄与をしている。一方、最低(*x*,*y*)-遷移に対しては、HOMO-LUMO ギャップ付近の縮重 MO が、HOMO と LUMO とともに関与していることがわかった。これら最低 *z*-および (*x*,*y*)-遷移は、それらに関わる MO が、チューブ表面に垂直な擬似的 -原子軌道により表されてい ることより、 - *遷移であることがわかった。

当日は、振動子強度の計算結果を、二番目のz-および(x,y)-遷移に関しても示し、合わせて、 それら種々の遷移に対して、その励起エネルギーと振動子強度のチューブ長および口径に対 する依存性に関して議論する。

[1] W. Liang, X. J. Wang, S. Yokojima, G. Chen, J. Am. Chem. Soc., 122, 11129 (2000).

[2] Y. Nomura, H. Fujita, S. Narita, T. Shibuya, Internet Electron. J. Mol. Des., 3, 29 (2004).

[3] Y. Nomura, H. Fujita, S. Narita, T. Shibuya, Chem. Phys. Lett., 375, 72 (2003).