3P096 *ab initio* 経路積分法による二水素結合機構 およびその同位体効果の解析

(横浜市大理¹・原研²・JST PRESTO³) 林 愛子¹・志賀 基之²・立川 仁典^{1,3}

【序】従来知られている水素結合は、電気陰性度の大きな二つの原子が水素原子を介して 結びついた様式であるが、近年、CH - 型や二水素を含めた新たなタイプの水素結合が 注目を集めている[1]。その中でも二水素結合は、OH や NH などの水素供与体と HM(M: 遷移金属、ホウ素、1 族、2 族元素)の水素受容体との間で、O^{6-H6+}…H^{6-M6+}といった 結合様式として見出された。水素受容体への結合距離(H⁶⁺…H⁶⁻)はファンデルワール ス半径の和よりも短くなる一方、水素供与体の結合距離(O^{6-H6+})は単体よりも長くなる といった、従来型の水素結合と似た特徴を持つ。本研究では代表的な二水素結合系として、 図 1(a)に示すような NH₄+…BeH₂を対象とした。この系は NH₄+が水素供与体、BeH₂が水 素受容体として働き、相互作用エネルギーは MP2/aug-cc-pVTZ レベルで - 10.0 [kcal/mol] と報告されている[2]。一方、二水素結合系では水素原子核自身の量子効果は重要であると 期待されるが、そのような効果を含んだ計算は未だ報告されていない。そこで本研究では、 電子だけでなく、核も量子力学的に取り扱うことのできる *ab initio* 経路積分分子動力学法 [3]により、二水素結合系 NH₄+…BeH₂の結合機構を解析する。それにより、核の量子効果 が及ぼす骨格構造の変化、電子状態緩和、およびその同位体効果を考察する。

【方法】従来型の第一原理計算手法では、温度効果や核の量子効果を直接考慮したシミュレーションを実行することは不可能である。本報告で用いる *ab initio* 経路積分分子動力学法[3]では、経験的ポテンシャル関数を一切用いずに、非経験的に電子状態を解きつつ、量子力学的な原子核の温度揺らぎを考慮することができる。そのため、例えば化学結合の組

Figure 1. Schematic illustration of NH_4^+ -BeH₂ system by (a) conventional MO (optimized equilibrium geometry) and (b) *ab initio* PIMD (representative snapshot of configuration).

み替えを伴うプロセス等では、非経験的に電子状態を求めることで、反応経路近傍のポテ ンシャル曲面を高精度で系統的に改善していくことが可能となる。経路積分法では、図1(b) に示すように、核の量子性を量子的 Boltzmann-Gibbs 統計に従って古典粒子の集まり(ビ ーズ)として表現する。計算には、 $\Delta t=0.1$ fs で 10000steps の熱平衡状態に達した後、 40000steps 分の核配置をサンプリングした。温度は 300K に設定し、電子状態は MP2/6-311++G(d,p)レベルで評価した。

【結果】表1に、二水素結合に関与する N - H⁵, H⁵...H⁶, H⁶ - Be 間距離の期待値(<R>) とその分散(Δ R)、および平衡距離(R_{eq})を示す。比較のため、表1の括弧内に BeH₂と NH₄+単体の各結合距離も示す。BeH₂, NH₄+単体に着目すると、共に期待値の方が平衡距 離よりも長くなっているのがわかる。これはポテンシャルの非調和性に由来し、零点振動 や温度効果により核間距離が長くなるためと考えられる。NH₄+に比べて BeH₂の方が伸縮 振動数は小さいため、BeH₂の方が Δ R は大きくなり、より揺らいでいることがわかる。

次に NH₄+...BeH₂に着目する。表 1 を見ると、N - H⁵, H⁵...H⁶, および H⁶ - Be 間距離 の期待値は全て平衡距離よりも長くなっているが、その中でも H⁵...H⁶の距離は特に長く、 揺らぎも大きくなっていることがわかる。この詳細を解析するために、図 2 に(N)H... H⁶(Be)間距離の分布を示す。二水素結合に直接関与している H⁵...H⁶の分布を見ると、 R=1.7 付近だけでなく R=3.2 付近にもピークが観測された。一方、図 1(a)で直接二水 素結合に関与しない H²...H⁶、H⁴...H⁶の分布においては、二水素結合距離に相当する R=1.7 付近にピークが見出された。このことは、二水素結合に寄与する NH₄+の水素原子 が入れ替わっていることを意味する。つまり、平衡構造では二水素結合に直接関与しない

H²やH⁴も、原子核の量子効果や温度効果を考慮することで、二水素結合に寄与するようになったものと考えられる。

Table 1. Geometrical parameters of $NH_4^+ \cdots BeH_2$. The values corresponding for monomers are included in parentheses.

	$N-H^5$	$\mathrm{H}^{5}\mathrm{H}^{6}$	$\rm H^6-Be$
<r>/</r>	1.0524 (1.0439)	2.1919	1.3738 (1.3509)
ΔR /	0.0705 (0.0698)	0.6493	0.0913 (0.0948)
R_{eq} /	1.0425 (1.0245)	1.5705	1.3511 (1.3291)

K. N. Robertson, O. Knop, and T. S. Cameron, *Can. J. Chem.* 81, 727 (2003).
S. J. Grabowski, T. L. Robinson, and J. Leszczynski, *Chem. Phys. Lett.* 386, 44 (2004).
M. Tachikawa and M. Shiga, *J. Chem. Phys.* in press (2004).