Alq₃/LiF/Al界面の構造と電子状態に関する理論的研究

(阪大産研¹・産総研²) 柳澤 将¹, 森川良忠^{1,2}

【序】Alq₃(tris(8-hydroxyquinolinato)aluminum)は典型的な発光素子材料として知られているが、近年、Alq₃分子膜とAl電極の間にLiF絶縁層を挿入したAlq₃/LiF/Al界面からなる素子が極めて発光特性が高いことが見出され、平面ディスプレイ等への応用が期待されている。この素子の発光性能は電極からの電子注入効率に依存しており、電子注入効率の向上をもたらす要因として陰極の仕事関数の低下、界面双極子の形成、絶縁層でのバンドの曲がり等が挙げられるが、これらのうちどの要素が支配的であるのかまだ分かっていない。また、実際の素子ではLiFは均一に積層せず島状にAl電極を被覆し(平均層厚: 0.5 nm程度)、Alq₃/LiF/Al・Alq₃/Al界面が共存すると考えられるので、両方の界面相互作用を考慮する必要がある。本研究では、第一原理周期的密度汎関数計算によってAlq₃/LiF/Al界面の電子状態を再現し、電子注入効率を支配する要因を明らかにすることを目的とした。今回は主としてAlq₃/Al界面の構造と電子状態について詳しく発表する。

【方法】第一原理分子動力学法プログラムSTATEを用いた周期的密度汎関数計算により、界面の 電子状態を計算した。Al(111)表面、Al/Alq₃、Al/LiF及びAl/LiF/Alq₃界面の構造を最適化し仕事関 数を計算した。電子 イオン相互作用の記述にはultrasoft pseudopotentialを用い、平面波基底のカ ットオフを 25 Ry(波動関数)、225 Ry (電荷密度)とした。Al電極を模したAl(111)表面は 3 層の周期 的スラブで記述し、表面垂直方向には 2.8 nmの真空層を挿入した。k点は、構造最適化では 4×4 の単位セルに対して 2×2 点、得られた構造を用いた状態密度(DOS)の計算では 4×4 点サンプリン グした。界面の構造は複雑で対称性も低いので、局所安定構造が複数存在すると考えられる。浅 い局所安定構造に捕われるのを避けるため有限温度で構造をアニールした後、最適化を行なった。

【結果及び考察】

Alq₃ は二種の構造異性体(facial、 meridianal; Fig. 1)が存在し、永久双極子を 持つことが知られている。Fig. 1 に、得ら れた各異性体の最高占有軌道(HOMO)と 最低非占有軌道(LUMO)を示す。

Table I. Dipole moments (component normal to the surface) and energy difference of two Alq_3 isomers. Units are in Debye and kcal/mol.

	dipole	$\Delta E = E(f) - E(m)$	
Present	6.2 (f), 2.0 (m)	3.1	

Table Iに双極子モーメント及び異性体間 のエネルギー差を示す。双極子モーメン トは表面垂直成分のみの値であるが、 Alq₃が有意な双極子モーメントを持つこ とが分かる。異性体間のエネルギー差は 非常に小さいが、これは以前の密度汎関 数計算^[1]でも報告されており、またAlq₃

Fig. 1 HOMO (lower) and LUMO (upper) of *facial* (f) and *meridianal* (m) isomers of Al q_3 . N and O atoms are indicated by blue and red spheres, respectively.

分子膜に関して実験的に報告されたアモルファス層での両異性体の共存^[1]を裏付ける結果である。 分子軌道は、HOMOはO原子に局在化するのに対し、LUMOはN原子に局在化する。この描像は上 記の計算^[1]の非局在化した描像とは異なるが、他のグループの量子化学計算の結果^[2]と一致する。 2. Alq₃/Alの電子状態

次に、 Alq_3/Al 界面の電子状態の計算を行なった。Fig. 2 に、 $Alq_3(f)/Al$ の差電子密度 $\Delta \rho (\equiv \rho_{Alq_3/Al} - \rho_{Alq_3/Al})$ $(\rho_{Ald3} + \rho_{Al})$)を示す。これによると、 Alg_3 のAl表面への吸着に伴い、主にO原子付近で電荷移動が 見られる。Alq3のprojected DOS (Fig. 3)を見ると、Alq3のHOMO及びLUMOは、吸着後も軌道のキ ャラクタを保持していることが分かる。このことは、Alq3とAl表面の波動関数の混成が小さいこ とを示唆している。実際、界面のbinding energyは - 0.16 eVと非常に小さい(Table II)。ま

Table II. Interface binding energy, work function, and dipole た、部分的に占有されたLUMOは、UPSで観 moment of $Alq_3(f)/Al$ interface. Units are in eV and Debye. Work function of clean Al(111), and dipole moment of $Alq_3(f)$ with its geometric structure set as the one in the adsorbed state 応すると考えられる。Table IIに、Alq3(f)/Al are also displayed for comparison.

	binding energy	work function	dipole moment
Alq ₃ (f)/Al	- 0.16	2.29	4.51
$Alq_3(f)$			4.72
Al		3.88	

Fig. 2 Density difference defined as $\Delta \rho (\equiv \rho_{Alg3/Al} - (\rho_{Alg3} + \rho_{Al}))$ in Alq_3/Al interface. N and O atoms are indicated by red and blue spheres, respectively. Dotted and Plain contours indicate increase decrease and in density, respectively.

参考文献:

^[1] A. Curioni and W. Andreoni, IBM J. Res. & Dev. 45, 101, 2001, and references therein. ^[2] N. Johansson, T. Osada, S. Stafström, W. R. Salaneck, V. Parente, D. A. dos Santos, X. Crispin, and J. L. Brédas, J. Chem. Phys. 111, 2157, 1999.

著しく低下した。これは、実験的に観測 された仕事関数の変化(-1.4 eV)^[3]とよく一致している。また、 Alg₃(f)/Alの双極子モーメント(表面垂直成分のみ)は 4.51 Dに対し、 吸着状態の構造を切り出してAlg₃(f)の双極子モーメントを計算する と 4.72 Dとなり、Alq3の双極子モーメントが大きく寄与している。 このことは、Alq3の双極子モーメントが表面に誘起される双極子と 相互作用し、仕事関数の変化に寄与することを示唆している。これ を確かめるには、さらにAlq3の吸着の配向を様々に変えた場合の仕 事関数の変化を見る必要がある。

測されたAlq₃/Al界面相互作用の状態^[3]に対

の界面binding energy、仕事関数、及び双極子 モーメント(表面垂直成分のみ)を示した。界 面の波動関数の混成は小さいにも関わらず、 仕事関数は 3.88 eV (Al単体)から 2.29 eVと

Fig. 3 Projected DOS of $Alq_3(f)$ in $Alq_3(f)/Al$ interface.

^[3] T. Yokoyama, D. Yoshimura, E. Ito, H. Ishii, Y. Ouchi, and K. Seki, Jpn. J. Appl. Phys. 42, 3666, 2003.