2P088

金表面への TTF の吸着に関する理論的研究

(京大院工¹・JST,CREST²) ○林正史¹,任化為¹,久保亜依子¹, 笛野博之¹,御崎洋二¹,田中一義^{1,2}

[**緒言**] 単分子トランジスタのような分子ナノデバイスを実現 するうえで、パーツ同士を接合させる様式として金表面への有 機硫黄分子の吸着が注目されている。テトラチアフルバレン

(TTF)を基とする有機硫黄分子は結晶状態におけるπ-π型 の積層により幅広いバンドを形成するため有機導体のドナー分 子として有用である。このようなTTFと金表面の接合について、 近年多くの興味が持たれており、例えばTTFとテトラシアノキ ノジメタン(TCNQ)の電荷移動錯体が、カラム形成によるナノ ワイヤで金電極間を接合することにより金属的な導電性を与え ることが報告されている¹⁾。本研究では Fig.1 のような Au(111)

Fig.1 Au(111)面と吸着サ イト。白色は第一層、灰 色は第二層、黒色は第三 層を表す。

面のモデルの Au₃₇クラスターに TTF 1 、チオール置換基の付いた TTF 誘導体 2 を吸着させた構造を設計し、 1 および 2 の Au(111)表面への吸着の挙動について分子軌道法により検討した。

[結果と考察] TTF1 と Au₃₇ クラスターについて、HF 法により計算を行った(Table 1)。吸着 エネルギー E_{ad} は以下の式によって計算した。

 $E_{ad} = E(TTF) + E(Au(111)) - E(TTF / Au(111))$

ここで、E(TTF)は TTF 単体、E(Au(111))は Au₃₇ クラスター、E(TTF/Au(111))は TTF 分子が Au₃₇ クラスターの(111)面に 吸着した状態のエネルギーを表す。吸着 構造を求めるためには、S の Basis Set に diffuse 関数を含める必要があった。また、 Au に LANL2MB を使った場合、 LANL1MBを用いた場合よりも吸着エネ ルギーが小さい値となり、S-Au 間の距 離も長くなった。これらの結果は、吸着 構造においてSのローンペア軌道の広が りや Au の内殻電子が影響を与えること を示している。

Table 1 TTFのAu(111)面への吸着エネルギーEadとその構造

Basis set		E_{ad}	構造	S-Au D
				最短距離
Au	Others	(kcal/mol)		(Å)
LANL1MB	3-21G ^(*) a)	67.33	垂直	3.055
LANL2MB	3-21G ^(*) a)	25.50	垂直	3.361
LANL2MB	3-21+G ^(*)	39.94	垂直	3.226
LANL1MB	3-21G ^(*) a)	61.39	平行	2.726
LANL2MB	3-21G ^(*) a)	30.14	平行	3.454
LANL2MB	3-21+G ^(*)	43.58	平行	3.234

TTF1とAu₃₇クラスターについて、基 底関数LANL2MB(Au)、3-21+G^(*)(TTF)を用いて計算を行った結果、Au(111)面に対して垂直 とした場合(Fig. 2(a))における吸着エネルギーは39.94 kcal/mol、構造を平行とした場合(Fig.

a) S のみ diffuse 関数を含む

2(b)) における吸着エネルギーは 43.58 kcal/mol となり、平行型の方が安定であるという結果 が得られた。Natural Bond Orbital (NBO) 解析²⁾により、垂直の場合の Au 表面に近い二つの Sには電荷が 0.37 程度あり (TTF 単体の S の電荷は 0.17)、TTF 全体の電荷は-0.03 であった。 平行の場合は四つの S に 0.40 程度の電荷があり、TTF 全体の電荷は 0.03 であった。どちらの 場合も電荷移動はほとんど起きていないことがわかった。垂直型の二つの S はそれぞれ fcc hollow site よりの bridge site に吸着しており、平行型の場合は四つの S は atop site に近いとこ ろに吸着していた。NBO 解析による Natural Localized Moleculer Orbital (NLMO) の結果、TTF の S のローンペアに対する Au の寄与は 0.5%未満であり、S のローンペアと Au の間の相関は 極めて弱かった。

Fig. 2 TTFの Au(111)表面への吸着の最適化構造。(a) 垂直型 (b) 平行型。単位はÅ。

TTF 誘導体 2 の場合、末端はチオール基からプロトンの取れた状態になっており、この S と Au(111)面との吸着構造について、Au に対しては基底関数 LANL2MB、C, H, S については 3-21G^(*) を用い、チオール部位の S にのみ diffuse 関数を含めて計算を行った。TTF 部位を Au(111)面と垂直とした場合 (Fig. 3(a))の吸着エネルギーは 109.89 kcal/mol、平行とした場合 (Fig. 3(b))は 106.79 kcal/mol となった。この場合末端に柔軟な-CH₂S 基があるために、TTF の S が吸着する場合よりも比較的自由に吸着することができる。どちらの場合も二つの S は bridge site に近いところに吸着していた。TTF 誘導体 2 全体の電荷は垂直型で-1.50、平行型 で-1.44 であった。さらに、NLMO の結果、-CH₂S 基の S のローンペアに関して、垂直型の場 合 Au の寄与が 11.6%、平行で 8.9%の寄与が見られ、チオール部位の S と Au(111)面の間に結 合があると考えられる。

Fig. 3 TTF 誘導体 2 の Au(111)表面への吸着の最適化構造。(a) 垂直型(b) 平行型。単位はÅ。

[参考文献] 1) M. Sakai, M. Iizuka, M. Nakamura and K. Kudo : *Jpn. J. Appl. Phys.*, **42** (2003) 2488; 2) A. E. Reed, L. A. Curtiss, and F. Weinhold : *Chem. Rev.*, **88** (1988) 899;