2P020 一連の部分重水素化ヘキサン酸ナトリウムの振動スペクトル解析

(名工大院工) 加賀啓太,三島宏之,山本靖,多賀圭次郎,吉田忠義

【目的】両親媒性分子は、溶液中で濃度増加にともなって種々の自己組織化集合体を形成す ることが知られている。本研究では、両親媒性モデル分子としてヘキサン酸ナトリウム (NaHex)を取り上げ、親分子種(d₀)及び一連の部分重水素化NaHex(6,6,6-d₃, 5,5-d₂, 4,4-d₂, 3,3-d₂, 2,2-d₂)について、密度汎関数(DFT)法による基準振動計算を行い、実測値と計算値との比較検 討を行うことを目的とする。また、DFT法を用いた計算赤外及びラマンスペクトルと、実測 赤外及びラマンスペクトルとの比較検討も行う。

【方法】理論計算は、NaHex-d₀について分子組み立てソフト(Molda)で平面トランス構造をと るようにデータを作成し、Gaussian98 プログラムを用いてDFT法(B3LYP/6-31G*及び B3LYP/6-311+G**基底)により、一連の化合物について構造最適化及び基準振動計算を行った。 【結果及び考察】図1に、一連のNaHexの1400 1200cm⁻¹領域の実測固体赤外スペクトルを 示す。この領域には、分子内の炭素鎖が平面トランス形をとっている場合、赤外スペクトル にBand Progressionとよばれる一連の等間隔かつ同程度の強度をもつバンドが観測されること が知られている¹⁾。このバンドの数 Nは、炭素鎖数 nが偶数の場合は、N= n/2、奇数の場合は、 N= (n+1)/2 である。図1に見られるように、重水素の位置がカルボキシ基に近くなるほどBand Progressionのバンドの数が減少していき、2,2-d₂では観測されないことがわかる。

Fig.1 IR spectra of a series of NaHex in the 1400 – 1200 cm⁻¹ region

この領域のB3LYP/6-31G*基底による基準振動計算の結果及び帰属をTable 1 に示す。一般に 理論計算で得られる計算値は、実測値より約 10%高波数側に計算されるので、 Wavenumber-Linear Scaling(WLS)法²⁾を用いて補正し、実測値の再現を試みた。Table 1 の太字 で示したものがBand Progressionに関するバンドであるが、これらのバンドのすべてがCH₂縦 ゆれ振動の組み合わせによるという結果が得られた。

また、他の領域についても同様に振動スペクトル解析を行い、実測赤外及びラマンスペクトルと計算赤外及びラマンスペクトルとの比較検討を行う。

d ₀					6,6,6-d ₃				
Observed		6-31G*			Observed		6-31G*		
IR	Raman	Calc.	WLS	Assignment	IR	Raman	Calc.	WLS	Assignment
1385	1382	1443	1391	$v_sCO_2+\delta_sCH_3+vC_2-C_1$					
		1442	1390	$\delta_s CH_3 + \nu_s CO_2$					
1365		1424	1373	$w C_4 H_2 + w C_3 H_2 + w C_5 H_2$	1363		1423	1372	$w C_4 H_2 + w C_3 H_2 + w C_5 H_2$
1341		1395	1346	$wC_3H_2+wC_5H_2$	1340		1394	1345	$wC_5H_2+wC_3H_2$
1302		1347	1301	$t C_5 H_2 + t C_4 H_2$		1204	1345	1299	$t C_4 H_2 + t C_5 H_2$
	1298	1338	1293	$t C_3 H_2 + t C_4 H_2$		1294	1337	1292	$t C_3 H_2 + t C_2 H_2$
1288		1334	1289	$w C_4 H_2 + w C_3 H_2 + w C_5 H_2$	1285		1329	1284	$w C_2 H_2 + w C_5 H_2 + w C_4 H_2$
1265	1261	1304	1261	$t C_2 H_2 + t C_5 H_2$	1256	1249	1291	1249	$t C_5 H_2 + t C_2 H_2$
1222	1225	1261	1221	$w C_{3}H_{2}+w C_{2}H_{2}+w C_{4}H_{2}$	1216	1217	1254	1214	$w C_{3}H_{2}+w C_{2}H_{2}+w C_{4}H_{2}$
1200	1196	1240	1201	$v_{s}CO_{2}+r_{s}CH_{3}+vC_{2}-C_{1}$					

Table 1. Observed and calculated wavenumbers (cm⁻¹) for a series of NaHex in the 1400–1200 cm⁻¹ region

5,5-d ₂				4,4-d ₂					
Observed		6-31G*			Obs	Observed		1G*	
IR	Raman	Calc.	WLS	Assignment	IR	Raman	Calc.	WLS	Assignment
1385	1202	1441	1389	$\delta_s CH_3 + \nu_s CO_2$	1204	1381	1443	1390	$v_sCO_2+\delta_sCH_3+vC_2-C_1$
	1362				1364		1442	1390	$\delta_s CH_3 + \nu_s CO_2$
1356		1415	1365	$wC_3H_2+wC_4H_2$	1343		1397	1348	$wC_3H_2+wC_2H_2$
1316		1363	1316	$wC_4H_2+wC_2H_2$			1385	1336	wC_5H_2
1289	1291	1337	1292	$t C_3 H_2 + t C_4 H_2$	1293		1332	1287	$t C_3 H_2 + t C_2 H_2 + t C_5 H_2$
1275		1314	1271	$t C_4 H_2 + t C_2 H_2$		1266	1308	1265	$t C_5 H_2$
1231	1233	1269	1229	$wC_2H_2+wC_3H_2$	1253		1292	1250	$wC_2H_2+wC_3H_2$

3,3-d ₂					2,2-d ₂					
Observed		6-31G*			Observed		6-31G*		1	
IR	Raman	Calc.	WLS	Assignment	IR	Raman	Calc.	WLS	Assignment	
1384	1382	1441	1389	$\delta_s CH_3 + \nu_s CO_2$	1285	1282	1443	1390	$\delta_s CH_3$	
1262	1266	1415	1265	wСН⊥wСН	1365	1365	1440	1388	$v_s CO_2 + s CO_2 + vC_2 - C_1$	
1302	1300	1413	1303	$w c_{5} c_{12} + w c_{4} c_{12}$	1365		1423	1372	$w C_4 H_2 + w C_5 H_2 + w C_3 H_2$	
		Γ^{1344}	1299	$t C_5 H_2 + t C_4 H_2$	1334		1384	1336	$w C_3 H_2 + w C_5 H_2$	
1298	1294	1344	1298	$w C_2 H_2 + w C_4 H_2 + w C_5 H_2$	1299	1299	1346	1300	$t C_4 H_2 + t C_5 H_2$	
		L ₁₃₃₄	1289	$wC_{2}H_{2}+wC_{4}H_{2}+wC_{5}H_{2}$	1281	1281	1326	1282	$t C_{3}H_{2}+t C_{5}H_{2}$	
1250		1290	1248	$t C_4 H_2 + t C_5 H_2$			1302	1259	$w C_4 H_2 + w C_3 H_2 + w C_5 H_2$	
1214	1216	1249	1210	$t C_2 H_2$		1219	1263	1222	$t C_3 H_2 + r_a C H_3$	

R.A.Meiklejohn, R.J.Meyer, S.M.Aronovic, H.A.Shuette, V.W.Meloch, Anal.Chem., 29 (1957) 329.
H.Yoshida, K.Takeda, J.Okamura, A.Ehara, H.Matsuura, J.Phys.Chem.A, 106 (2002) 3580.