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Recently, we have developed a new code for the linear-scaling formation of the Kohn-Sham
Hamiltonian and electronic Hessian for use in generalized-gradient approximation (GGA) density-
functional theory (DFT) calculations of molecular properties [1,2]. Our work is implemented in the
program system DALTON. Presently, we present an extension of our code to the inclusion of Hartree-
Fock “exact exchange” to enable hybrid-DFT calculations to also be performed.

For the Coulomb contribution, we introduced a new generalization of the fast multipole method
(FMM) [3], originally devised for point-charge systems, which allows O(n) calculations over
continuous Gaussian distributions. Our scheme affords a simpler implementation than the original
continuous fast multipole method (CFMM) of White et al. [4] which was designed for the same
purpose. Our approach differs from their work by introducing a partitioning of the Coulomb energy
into “classical” and “nonclassical” terms which may be explicitly evaluated, individually, by linear-
scaling multipole techniques and a modified two-electron integral code, respectively. In this manner,
a single FMM-like pass is required for the evaluation of the classical Coulomb energy in which
continuous, possibly overlapping, Gaussian distributions are treated like point-charges; this is followed
by a nonclassical correction phase in which the overlap effects are computed explicitly and added to
the classical contribution. We name our algorithm the branch-free multipole method (BFMM) since
it can be regarded as a generalization of the original FMM that does not require the additional book-
keeping structures (“branches”) introduced in the CFMM algorithm.

For the exact exchange contribution, our approach follows the pioneering work of Schwegler and
Challacombe [5] in which the linear-scaling regime may be achieved by exploiting the sparsity of the
density matrix. For electrically insulating materials, for example, Kohn has shown [6] that the
density matrix elements fall off exponentially in the following manner
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as |r;-r,] = o, where K is a constant characteristic of the system (related to the band-gap). By pre-
ordering integral estimates and employing efficient testing, the ONX algorithm of Schwegler et al. [7]
may achieve effective linear-scaling, but for small-gap systems with long-range (real-space) exchange
contributions the algorithm reverts to the quadratic-scaling regime. Our algorithm also relies on the
fundamental sparsity of the density matrix, but our implementation differs from their work, and also
the successful O(n) LinK scheme of Ochsenfeld et al. [8], in the following manner.

In the present work, we again exploit the partitioning of the two-electron integrals into “classical” and
“nonclassical” parts. In this way, the computational work with super-linear scaling is conceptually
isolated in the classical phase: for both Coulomb and exchange, the nonclassical phase is
automatically linearly scaling. Specifically, given that all integrals over Gaussian basis functions
may be expressed as linear combinations of Boys functions, F,(x), of orders n =0, we introduce the
following decomposition

1
F,(x) = f exp(-xt>)t*"dt = F** (x) + F™ (x)
0

where the classical contribution may be defined by

F(x) = fexp(=xt)™"di =
0

and the nonclassical correction term by
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where E,(x) is the exponential integral function
E, (x) = [exp(-x)t"dt = x” exp(-0)f + 0
1

The argument x is given by
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where p and g are the exponents of the Gaussian distributions, and Rpp the separation between their
centres. Clearly, the negative nonclassical contribution, which decays exponentially in Rpp, will
rapidly enter the linear-scaling regime as Rpp becomes large on the molecular scale. In contrast, the

classical contribution is non-local, but may be treated completely using multipole acceleration
techniques.

This approach is conceptually attractive and, in addition, removes all need for the elaborate
consideration of “penetration acceptability criteria” over which many authors have devoted
considerable thought (e.g. ref.[9]). In principle, all charge interactions may be treated by multipole
expansion in our scheme, with the corrections due to E,(x) applied afterwards. Moreover, the decay
of E,(x) is seen to be independent of n — that is, the screening of the nonclassical integrals can be
implemented in a rigorous and simple manner that is independent of the angular momentum of the
basis functions. (This should be contrasted with tests based on Gaussian overlap, ubiquitous in the
literature, where often a simple “s-s” overlap test is used in an ad hoc manner for all higher angular
momentum functions also).

In the case of the Coulomb energy, the non-local term is efficiently treated using the FMM as
described above. This cannot be applied to the exchange problem, but the use of efficient multipole
expansion techniques is still employed. =~ We note that Schwegler and Challacombe [9] have
previously presented an implementation of their ONX algorithm combined with multipole expansions
for the long-range integrals. However, we emphasize that they do not exploit the explicit partitioning
of the classical and nonclassical terms that we favour and only contract integrals of “well-separated”
Gaussians (with a negligible nonclassical component, according to some “acceptability criteria”) using
multipole techniques. By removing the need for these complex acceptability criteria, we argue that
our approach is simpler than the traditional schemes.

These techniques have also been implemented for the construction of the electronic Hessian for the
calculation of molecular properties using linear response theory. As a result, the traditional
bottlenecks for the treatment of second-order static and dynamic properties in large molecular systems
have been removed. We demonstrate the capabilities of our code with some timing benchmarks, as
well as applications to the calculation of electric and magnetic properties, using both GGA and hybrid
DFT functionals.
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