生成物 1,の電子状態とその生成機構 l。の光解離 1P099

(慶大理工¹、東大院総合²)

小鷲 聡美 1、大野 智代 1、菅原 道彦 1、中西 隆造 2、齋藤 直哉 2、永田 敬 2、藪下 聡 1

【序】I3分子の光解離過程は液相、気相ともに盛んに研究されているが、未だ不明確な点が多い。 特に気相における光解離ダイナミクスは、永田ら ¹)、Neumark ら ²)により実験的に調べられ、C バ ンド(3.5eV)、D バンド(4.3eV)への励起後の解離生成物として I+I+I 、I₂ +I、I₂+I が観測され、 分岐比 I2-/I-が強く励起波長に依存し、また溶液相と顕著に違うことなどが明らかになっている。 【計算】励起後の光解離過程に関与するポテンシャルエネルギー曲面(PES)をスピン軌道(SO)配 置間相互作用法によって求めた。Christiansen 等の RECP と基底関数[4s4p1d1f]を用いて SOCI 計算を行った。主として共線形の PES を 2 つの核間距離(R_1 , R_2)の関数として求めた。

=5.5bohr) に おいて基底状態の電子配 置は、5p 原子価軌道からなる分子軌道部 分のみ記して、 $2\sigma_{\rm u}^2 1\pi_{\rm u}^4 1\pi_{\rm g}^4 2\pi_{\rm u}^4 3\sigma_{\rm g}^2 3\sigma_{\rm u}^0$ である。SO 相互作用を考慮すると光学許 容遷移の励起状態として ^{1,3}Πu (1πg 3σu) と ^{1,3}Σ+_u (3σ_g 3σ_u) が考えられる。表 1 で、C バンドの主成分である 3Πu(Ou+) への 遷移はスピン禁制であるが、¹Σu+(0u+)状態 とSO配置混合を持ち、大きな "intensity borrowing" によって許容遷移となる。

実験的に生成物の異方性分布から、また 理論的に表1にある励起エネルギーの一 致と遷移モーメントの大きさから、C バンドの 主原因は平行遷移である ³∏u(0u+)と帰属でき る。このため、PES の計算は主に $\Omega=0$ +の状態 について、また I₂₊I⁻の電子状態を明確にする ため、 Ω = 1 の状態についても行った。

(a) Ω=0+の励起状態経由の解離過程。

Franck-Condon 領域において、ほとんど全 ての励起状態の PES は直線構造が安定で、ほ ぼ共線形を保ったまま解離すると考えられる。

【 **結果と考察** 】 I₃⁻の平衡構造(R₁=R₂=2.9 表1.SOCI 法による遷移エネルギーと遷移モーメント

励起状態	Е	μ ² (au)	Eexp
	(eV)		(eV)
$^{3}\Pi_{g}$ (1 _g , $2\pi_{u}$ $3\sigma_{u}$)	2.24	0	
³ ∏ _g (0 _g +)	2.79	0	
$3\Sigma_{\mathrm{u}^{+}}$ (1 _u , $3\sigma_{\mathrm{g}}$ $3\sigma_{\mathrm{u}}$)	2.30	0.002	
$3\Sigma_{\mathrm{u}^{+}}(0_{\mathrm{u}^{-}})$	2.31	0	
$^{1}\Pi_{g}$ (1 _g , 2 π_{u} 3 σ_{u})	2.91	0.10a	2.8
$^{3}\Pi_{\mathrm{u}}$ (1 _u , 1 π_{g} 3 σ_{u})	3.13	0.0123	
³ ∏ _u (0 _u +)	3.44	4.759	3.51
¹∏u (1u)	3.92	0.0119	
$1\Sigma_{u^{+}}(0_{u^{+}}, 3\sigma_{g} 3\sigma_{u})$	4.29	8.969	4.32

III=175° ^a calculated at

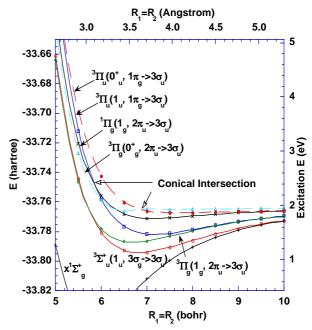
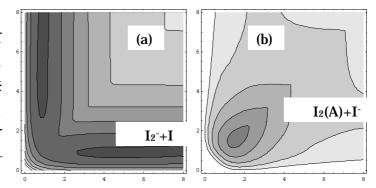


図 1 . I₃ の C バンド光解離に関与する PES

 Ω =0+の PES を求め、低い方から順に $S_1(X^1\Sigma_g^+)$ 、 $S_2(^3\Pi_g,\ 0_g^+)$ 、 $S_3(^3\Pi_u,0_u^+)$ として図 1 に示す。 S_3 面に励起した I_3 は最大勾配を持つ対角線方向 $(R_1 = R_2)$ に進み、かなりの割合が円錐交差近傍で S2面に遷移する。そして約半分の軌跡はそのまま対角線方向へ進み、I (¹S) + I(²P3/2) + I(²P3/2)を 生成する。また、 S_2 面では R_1 が大きくなるに従い 2 体解離の方向へ PES が勾配を持ち、さらに 解離領域での S_1 , S_2 間の非断熱遷移により、 I_2 ($X^2\Sigma_{u^+}$) $+I(^2P_{3/2})$ と I^- (1S) $+I_2(X^1\Sigma_{g^+})$ に分岐する。

(b) Ω=1 の励起状態経由の解離過程。


最近 Neumark グループ 2)は、特に 2 C バンドの低エネルギー側からの 2 体解離生成物 4 I 2 I に 4 状態(3 II 4 I 4 I)が含まれていることを明らかにした。 (前述の 4 I 2 (4 I)の生成を否定するものではないが。) 共線形を考える限り、 3 II 4 (4 I 4 I) 4 I 4 I 4 2全体の対称性は、 4 I 4 I 4

まず、実験的な振動波数から、ゼロ点準位に対 図2 I_3 ・のポテンシャル図、3体解離 $D_{\infty h}$ 構造 応する構造変形を、変角振動: III=3.3°、逆対称伸縮: $R_1= R_2=0.06$ と見積もった。 変角によって遷移モーメント μ が顕著に増加する励起状態は、 ${}^1\Pi_g$ (I_g , $2\pi_u$ $3\sigma_u$)で、表 1 にあるように III=175°において、 $S_3({}^3\Pi_u, 0_u^+)$ の2%の強度(μ^2)を持ち、170°では、1割近くになった。逆対称伸縮によって強度の増加を示す状態は、 ${}^3\Pi_g$ (0_g^+ , $2\pi_u$ $3\sigma_u$)で、 $R_1= R_2=0.1$ において $S_3({}^3\Pi_u, 0_u^+)$ の5%程度の強度を持った。

図 2 に $D_{\infty h}$ 構造における PES を示す。いずれも 3 体解離の生成物 I+I+I- に相関する。特に変角振動によって遷移強度を持つ ${}^{1}\Pi_{g}$ (1_{g} , $2\pi_{u}$ 3 σ_{u})は、B バンドの主成分と考えられ、また、Franck-Condon 領域では、3 体解離方向に最大勾配を持ち、 ${}^{3}\Pi_{u}$ (1_{u} , $1\pi_{g}$ 3 σ_{u})と、R=5.8 bohr 付

近で円錐交差を示す。そして、R=8bohr 以降では、 $R_1=R_2$ にそって $^3\Pi_g$ (1_g , $2\pi_u$ $3\sigma_u$)と近縮重している。これら 2 つの PES の 2 次元等高線を図 3 に示すが(5.5< R_1 , R_2 <13.5 bohr)、(b)の $^1\Pi_g$ (1_g)PES 上で解離が進行すると、3 体解離の生成物である I+I+I-I

【文献】 ¹⁾T.Nagata et al., CPL, **350** (2001) 233; ²⁾ D.M.Neumark et al., JCP, **120** (2004) 7901.