1P055 ジオキサンハイドロパーオキサイドの振動スペクトル

(産総研 爆発安全) 藤原英夫,松永猛裕

1. ジオキサン(DOX)は強力な溶媒として広く用いられているが,空気(酸素)との共存により 容易に過酸化物を生成することが知られている。その過酸化物の危険性を把握するためにも 分子構造,分光学データが必要であるが,Derricoらによるクロロホルム中の赤外分光¹⁾,Nord らによる X 線結晶構造解析²⁾の研究以外にはほとんど情報がない。また,ジオキサンハイド ロパーオキサイド(DOX-OOH)は酸素を含む 6 員環に OOH 基が結合した分子であり,6 員環 のいす型,ボート型,ねじれ型の3種類の環構造と OOH 基の内部回転により非常に多くの配 座が考えられ分子構造学的に興味深い対象である。本研究では DOX-OOH の量子化学計算を 行い,安定配座を決定し,計算の振動数と実測値の比較を行った。

2. まず DOX 環の作るいす型1種,ねじれ型3種,OOH 基の結合位置2種(axial,equatorial), 2面角 OCOO の作る3配座2面角 COOH の作る3配座の計72配座について RHF/6-31G** レベルで構造最適化を行い,その結果いす型について12個,ねじれ型20個,ボート型3個 の安定配座を見出した。ねじれ型,ボート型については最も相対エネルギーが低い配座でも 3.37 kcal/mol いす型の最安定配座よりエネルギーが高かった。また,DOX ではねじれ型の 相対エネルギーは 6.8 kcal/mol であるので,OOH 置換基の存在によりいす型とのエネルギー

差が接近している。RHF 計算結果を 考慮して,いす型の内比較的相対エネ ルギーの小さい 7 配座について密度 汎関数法により B3LYP/6-31++G**レ ベルで構造最適化と振動数の計算を 行った。計算プログラムは GAUSSIAN03を用いた。

 計算結果を表1,表2に示す。環構 造はすべていす型である。二面角
 фOCOO, фCOOHによって分子内水素 結合を形成する配座とフリーな OH 基を持つ配座に分かれる。表中のエネ ルギーの低い上位3配座とa_(60,90), a_(60,-120)配座は分子内水素結合を 形成している。6員環の置換基は通常 equatorial 位のほうが安定であるが, この分子の場合は OH 基の配置の影 響のほうが大きいと考えられる。最安 定配座はRHF計算ではe_(60,-80)配座 であったが,B3LYP 計算では a_(-60,80)が最安定となり,しかも両

表1 計算結果 RHF/6-31G**

		0000	COOH	
配座名	-00H基	(deg)	(deg)	E (kcal/mol)
a_(-60, 80)	ах	-69.55	83.33	0.115
e_(60, -80)	eq	69.46	-84.38	0.000
e_(-60, 80)	eq	-62.34	83.99	0.940
a_(-60,-130)	ах	-65.38	-126.47	1.615
e_(60, 60)	eq	72.56	123.80	2.963
a_(180,120)	ax	189.35	117.64	3.313
a_(180,-120)	ах	187.85	-119.14	3.128
e_(-60,-130)	eq	-65.98	-134.14	4.276
e_(180,-120)	eq	168.61	-116.55	4.410
a_(60, 90)	ах	65.82	95.19	4.627
a_(60,-120)	ах	70.75	-116.96	4.865
e_(180, 130)	eq	166.90	133.71	5.037

表2 計算結果 B3LYP/6-31++G**

		0000	COOH	
配座名	-00H基	(deg)	(deg)	E (kcal/mol)
a_(-60, 80)	ах	-69.67	78.64	0.000
e_(60, -80)	eq	71.85	-84.48	0.018
e_(-60, 80)	eq	-65.89	85.76	1.000
a_(-60,-130)	ах	-66.11	-131.68	1.216
e_(60, 60)	eq	74.60	128.25	2.321
a_(180,120)	ах	186.70	119.35	2.999
a_(180,-120)	ах	187.04	-120.14	3.060

配座のエネルギー差は 0.018 kcal/mol と非常に接近している。両配座は共存している可能性が 大きい。(図1)

4. 図 2 に実測と計算の赤外スペクトルの比較を示す。実測値は文献 1 のクロロホルム中のス ペクトルであり,一部 DOX-OOH の劣化物も含んでいる。計算値は B3LYP/6-31++G**レベル の振動数計算により得られたスペクトルの横軸を 0.95 倍したものである。相対エネルギーの 小さい 4 配座についてのみ示したが,単一の配座のみではどれも実測を再現できない。B3LYP 計算の相対エネルギーから室温でのボルツマン分布を仮定して,a_(-60,80):e_(60,-80): e_(-60,80):a_(-60,-130) = 44 : 43 : 8 : 5 の割合でスペクトルを混合したところ,実測をよく再 現している。X 線結晶構造解析によると DOX-OOH は分子内ではなく分子間水素結合を形成 していると報告されているが²⁾,量子化学計算の相対エネルギーから,また分光的にも気相 あるいは希薄溶液中では a_(-60,80)や e_(60,-80)配座のような分子内水素結合を形成した構造 がほとんどであるといえる。ただしどちらの配座が実際に最安定であるかは低温でのスペク トルを測定しなければ断言できない。

図2 実測と計算(×0.95)の赤外スペクトルの比較