4Pp140 西洋わさびペルオキシダーゼ Compound II の反応機構

(金大理,千葉大薬^a,名古屋市立大^b)

O後藤英貴 加藤信彦 井田朋智 遠藤一央 細谷東一郎 a 塚本喜久雄 b

【序】西洋わさびペルオキシダー ゼ(HRP)は、過酸化水素(H2O2)に よる Benzhydroxamic acid(BHA) などの基質の酸化を触媒する。 HRP は、H2O2 により酸化され、 Compound I (HRP-I)となる。基質 を酸化して Compound II(HRP-II) となり、さらに基質を酸化しても との HRP に戻る(Figure1)。 磁化率の測定から HRP のスピ

Figure1 HRP の酵素反応経路

ン量子数は S=3/2、HRP-II は S= 1。 また FeTPP(py)O などのメスバ

ウアー測定値、[Fe(OEP)(N-MeIm)O]のプロトン NMR スペクトルとの比較により、ヘム鉄の電 子状態は HRP が Fe(III)、HRP-II は Fe(IV)と考えられている。さらに、ESR、¹H NMR スペク トルからスピン密度は Fe-O に局在化すると報告されている。

本研究では基質のモデルに p-cresol を用いて、HRP-II の反応機構(Figure1 の点線で囲んだ部分)を分子軌道法によって解析した。反応系のスピン多重度は、triplet、quintet の2通りを考慮し、スピン密度はどちらとも反応前は Fe-O に局在化しているものと考えた。quintet については、反応後 p-cresol にラジカルスピン S=1/2 が生成するものとした。

【計算方法】

HRP-OH 及び HRP-II のモデル化合物をそれぞれ[FeP(Im)OH]、 [FeP(Im)O]とし、構造最適化は MOPAC の AM1 で行った(Figure.2)。 非制限 Hartree-Fock 法(UHF)により、HRP-II と p-cresol の水酸基 の H との距離を 0.2 ごと変化させ、それぞれのエネルギーを計算し、 活性化エネルギー(Δ E)を求めた。UHF 計算は Gaussian98 を用い た。

【計算結果】

HRP-II と HRP-OH をそれぞれ構造最適化 したところ、Table1よ り Fe-O の結合次数が 1.55 から 1.06 に、さら に結合距離が 1.66 Aか ら 1.83 Aに変化した。 **Table 1** HRP-II と HRP-OH の結合次数お よび結合距離

e)
ł
3)
4)
))

Figure 2 [FeP(Im)O]と p-cresolのモデル その他の結合次数および結合距離については 目立った変化は見られなかった。そこで Fe-O の結合距離を反応系の自由度として、2 次元の ポテンシャルエネルギー面(PES)を計算した。 (Figure3)

【考察】

Table2.より、HRP-IIからHRP-OH ヘプロ トンが移動していくにつれて、ポルフィリンか らFeへ電子が供給されており、供給された電 子は、Tripletの場合には酸素に局在化し、 Quintetの場合は酸素とImidazoleに非局在化 した。このようにプロトンを受け取りやすいよ う電子が移動している様子が見られた。

Figure3 は両方とも double minimum の PES になったことから、その間に存在する極 大値を各多重度における遷移状態エネルギー とした。反応系のエネルギーを差し引いて ΔE を求めたところ、実験値(0.43eV)との一致はあ まりよくなかったが、Quintet における ΔE が 比較的小さいと思われる。

Figure 3 Potential energy surface

spin multiplicity is (A)triplet (B)quintet

Table2. 各多重度における atomic charge とスピン密度、および全エネルギーと活性化エネルギー

		_	at	tomic charge	(spin density)			
		triplet				quintet		
		HRP-II	T.S.* ¹	HRP-OH	HRP-II	T.S.* ¹	HRP-OH	
	dxy	(0.05)	(-0.08)	(0.05)	(0.57)	(0.53)	(0.75)	
	dyz	(-0.31)	(0.24)	(0.92)	(0.36)	(0.68)	(0.95)	
Fe	dzx	(0.05)	(0.00)	(0.82)	(0.88)	(0.29)	(0.97)	
	dx^2-y^2	(0.76)	(0.00)	(0.11)	(0.41)	(0.49)	(0.74)	
	dz^2	(0.10)	(0.26)	(0.33)	(0.66)	(0.43)	(0.88)	
Fe		1.77 (0.57)	1.71 (0.34)	1.93 (3.25)	1.82 (3.24)	1.78 (2.53)	1.99 (4.44)	
O* ²		0.37 (0.36)	-0.27 (1.30)	0.10(-0.91)	0.75 (0.34)	0.47 (0.38)	-0.56 (0.07)	
Por* ³		-1.82 (1.04)	-1.52 (0.38)	-1.12(-0.41)	-1.95 (1.01)	-0.97(-0.18)	-0.63(-0.53)	
Im* ⁴		0.02 (0.00)	0.28 (0.00)	0.00 (0.04)	0.03 (0.03)	-0.66 (0.96)	0.15 (0.03)	
p-cresol		0.30 (0.00)	-0.20 (0.06)	-0.91(-0.02)	0.21 (0.01)	0.05 (0.94)	-0.97 (1.03)	
E (eV)		-78374.7	-78373.6	-78376.8	-78374.0	-78373.3	-78376.1	
$\Delta E (eV)$			1.1			0.7		

*1: Transition State *2: HRP-II 及び HRP-OH の酸素 *3: Porphyrin *4: Imidazole

reference

[1] J. Sakurada, S. Masuda, T. Hosoya : JCPE journal 12, 219 (2000)