4Pp061

He₂分子の時間分解フーリエ変換型スペクトルの帰属

(岡山大理) 川口建太郎、西田茂樹、浜陽一

【序】 He₂分子は古くから、可視・紫外領域で研究され、多くの電子状態が知られている。 Ginter et al.は測定された電子遷移を整理して、(1 σ_g)²(1 σ_u) np λ (³ Π_g , ³ Σ_g ⁺) 状態における回転量 子数 N=20 までの準位 (グループ I)¹ と(1 σ_g)²(1 σ_u) ns σ , nd λ (³ Σ_u ⁺, ³ Π_u , ³ Δ_u) 状態における回 転量子数 N=17 までの準位(グループ II)² を量子欠損モデルにより解析した。ここで n は併合 原子極限における主量子数を示す。これらの結果によるとグループ I と II 間の電子遷移が赤 外領域に多数期待されるが、これまで 8000cm⁻¹以下では次の 3 つのバンドが報告されている のみである。(1) b³ Π_g -a³ Σ_u ⁺ バンド (the 0-0 band origin = 4750 cm⁻¹) (2) B¹ Π_g - A¹ Σ_u ⁺ バンド(the 0-0 band origin = 3501 cm⁻¹) (3) 4f-3d 遷移によるバンド(5100-5800 cm⁻¹)。(3)は、Herzberg, Jungen³)により f 軌道電子から生じる電子状態として最初に同定された。

本研究では最近開発した時間分解フーリエ変換型分光装置を用いて、ヘリウムガスのパルス放電により、He₂分子の新しい赤外バンドを多数観測し、各バンドの帰属、および解析を行ったので報告する。また時間分解スペクトルから、アフターグロー中での分子生成機構についても考察した。

【実験】実験には高分解能フーリエ変換型分光器 Bruker 120 HR を用いた。時間分解分光シ ステムについては、既に報告した⁴⁾。要約すると、He-Ne レーザー光の干渉波形を 50 MHz の クロック周波数で作動するチップ・コンピューターSX に入力し、干渉波形と同期したパルス 放電トリガーと AD トリガーを発生させた。SX のプログラムはアセンブラ言語で書かれ、 PCのタイミングに依存せずに独自のタイミングで動作できる。本実験では放電開始後 3 0 点の時間におけるデータを取得した。すなわちサンプリング間隔を 3 µsec に設定し、放電開 始後 87 µsec の時間範囲における赤外発光の時間変化を観測した。

He₂分子は H_e 10 Torr のパルス放電(20 µsec 間持続)により生成した。電流のピーク値は 0.5 A であった。測定は波数分解能 0.03 と 0.07 cm⁻¹で行った。ホローカソード放電と陽 光柱放電を試みた。高エネルギーの電子状態はホローカソード放電の方が、強く観測できた ので、最終データとして用いた。陽光柱放電ではエネルギーの低い電子状態での振動励起状態のスペクトルがホローカソード放電に比べて強く観測された。

【観測スペクトルと解析】検出器 InSb で 1800-7900 cm⁻¹の領域を測定した。この波数範囲 に上記の3種類の遷移に加えて次の遷移を帰属できた。(4) h ${}^{3}\Sigma_{u}^{+}$ -g ${}^{3}\Sigma_{g}^{+}$: 3163 cm⁻¹(5) g ${}^{3}\Sigma_{g}^{+}$ d ${}^{3}\Sigma_{u}^{+}$: 3205 cm⁻¹(6) j ${}^{3}\Sigma_{u}^{+}$ -g ${}^{3}\Sigma_{g}^{+}$: 3605 cm⁻¹。ここでバンド(6)は摂動が大きく帰属は部分的に なされた。また(7) 6300 cm⁻¹ 領域に現れるバンドでは combination difference より d ${}^{3}\Sigma_{u}^{+}$ への遷 移である可能性が最も高い。しかしながら発光の始状態については、適当な候補を見出すこ とができなかった。その状態の回転定数は 6.8529(4) cm⁻¹ で他の電子状態の値(7.1486 cm⁻¹: h ${}^{3}\Sigma_{u}^{+}$, 7.0965 cm⁻¹ : g ${}^{3}\Sigma_{g}^{+}$, 7.2262 cm⁻¹: d ${}^{3}\Sigma_{u}^{+}$) に比べて振動回転定数 α (0.22 cm⁻¹程度)分より 小さい。このことは振動励起状態の可能性を示唆するが、本実験ではエネルギーの高い電子 状態における振動励起状態は観測されていない。

可視光用ビームスプリッターと Ge 検出器を用いて、8000 – 12000 cm⁻¹ 領域を測定した。これまで報告されている(8) d³ Σ_{u}^{+} - c³ Σ_{g}^{+} : 9503 cm⁻¹, (9) c³ Σ_{g}^{+} - a³ Σ_{u}^{+} : 10889 cm⁻¹ の他に (10) f³ Σ_{u}^{+} (3d) - c³ Σ_{g}^{+} が 10600 cm⁻¹ 領域に検出された。励起状態における摂動の効果がスペクトルに認められた。

【時間分解スペクトル】図1に時間分解3 μsec で測定した赤外発光強度の時間変化を示す。 発光を与える励起状態の回転状態分布は時間とともに変化するが、各バンドで最も強い遷移 の強度をプロットしている。低エネルギーのb³Π状態からの発光以外の他のバンドは放電中 より、放電後のアフターグローで強く観測されている。これは20 μsec 間のパルス

 $He_2^+ + e -> He_2^* + hv$

(3)

【おわりに】パルス放電法・時間分解フーリエ変換型分光法 により He₂の多くの赤外バン ドが検出された。特にアフタ ーグロープラズマ中での反応 による高エネルギー状態の生 成が、顕著であった。電子 状態の帰属については、 6300 cm⁻¹バンドなど未解決で これからの課題である。

10000 図 2. He₂のエネルギー準位 ($a^{3}\Sigma_{u}^{+}$ v=0 基準)実線は観 測された遷移を示す。n(>1)は 併合原子における主量子数で ある。 $a^{3}\Sigma_{u}^{+}$ は基底状態より 18 eV 高い。

¹⁾D.S. Ginter, M. L. Ginter, and C. M. Brown, J. Chem. Phys. 81, 6013 (1984)

²⁾D. S. Ginter and M. L. Ginter, J. Chem., Phys. 88, 3761 (1988)

³⁾G. Herzberg and Ch. Jungen, J. Chem. Phys. **84**, 1181(1984)

⁴⁾K. Kawaguchi, O. Baskakov, Y. Hosaki, Y. Hama, C. Kugimiya, Chem. Phys. Lett. **369**, 293(2003)