4Dp04

2,5-ジケトピペラジンのマイクロ波スペクトル

(上智大理工、Monash Univ.)〇酒泉武志・Ronald D. Brown・Peter D. Godfrey

【序】最も小さいペプチド環である 2,5-diketopiperazine(DKP と略), [H₂C-C(:O)-NH]₂の固体状態 はX線回折法より 8 個の重原子が平面を有する平面環型(C_{2h})^D であるが、その気体状態では Godfrey 等²) によりマイクロ波スペクトル解析から "メチレン"ボート型(C_{2})であると報告された。 観測された cタイプ R枝は Ring-Puckering によって2本に分裂し、吸収線の分裂幅は約 2150 MHz であった。エネルギーの分裂幅(tunneling splitting: Δ)は 1075 MHz である。理論計算 [MP2/6-311++G(d,p)]から得られた相対エネルギーは "メチレン"ボート型(C_{2})が一番安定であり、 二つの等価な "メチレン"ボート型のバリヤー障壁は約 470 cm⁻¹であった。観測された cタイプ R枝の doublet(v=0 → v=1、v=1 → v=0)の K_{4} 値が大きな遷移 (K_{4} > 3)は二つの等価な ¹⁴N 核 (I=1)による超微細構造の分裂が小さく観測出来なかったが、 K_{4} 値が小さい遷移 (K_{4} =0~ 3)は超微細構造が2~3本に分裂した。今回、v=0の理論計算によると cタイプ R枝が二つの等 価な ¹⁴N 核 (I=1)によって超微細構造が9本 (ΔI =0, ΔF =+1)に分裂するが、吸収線の半値 幅や分解能等を考慮すると、3本に分裂することを参考に、観測された分裂幅から窒素核の核四極子 結合定数を決定することを試みた。また新たに遠心力歪定数, Δ_K を決定し、分光定数を改善したの で報告する。

【実験】試料 (DKP) は Aldrich 社のものを精製せずそのまま用いた。試料は真空チェンバー (外径30 cm、高さ30 cm) 内に組込まれた試料加熱装置で約 160°C に加熱され、2つのミラー(ϕ =3 cm)の中心部にアルゴンガスと共にノズルから噴射され、Cryo-pump(Varian HV8)で排気した。試料圧は4 x 10⁻⁴ torr で測定した。 試料加熱装置は上部 (試料)、中部、下部(ノズル)と3箇所の温度を設定できる。Stark 電極は平行平板型で電極間隔は約 2.0 cm である。マイクロ波スペクトルは33 kHz 矩形波 Stark 変調型分光器を用い、48 から 72 GHz の周波数範囲で、光源は YIG(12.0~18.0 GHz)の4倍音を用い、V-band の導波管で真空チェンバー内に導き、ミラーに固定されている。もう一方のミラーはステッピングモーターで可変可能である。検出法はもう1台の YIG(12.0~18.0 GHz)の4倍音を利用するスパーへテロゲイン方式を用いた。

【結果と考察】(超微細構造):二つの等価な¹⁴N 核(*I*=1)による超微細構造を予測するため理論値 [MP2/6-311++G(d, p)], χ_{aa} =1.719, χ_{bb} =1.708 MHz,を用いた。二つの等価な¹⁴N 核の核スピンを それぞれ *I*₁, *I*₂とすると全核スピン*I* は *I*=*I*₁+*I*₂, (*I*=2, 1, 0)となり, *F*=*I*+*J*となる。 *c*タイプ *R*枝の最も強い吸収線(ΔI =0, ΔF =+1)は9本に分裂するが、吸収線の半値幅や分光器の分解能 を考慮すると9本の成分が周波数の低い側から1重線(P1)、4重線(P2)、4重線(P3)と3つの吸収線 のパターンになる。観測された超微細構造は3本に分裂したパターン(S1)、2本に分裂したパタ ーン(S2)そしてS2とはパターンが異なるが2本に分裂したパターン(S2)の3つに分類でき た。2本に分裂したS2やS2'の弱い3本目の吸収線はStark効果によりStark成分によって隠れ てしまい、2本として観測された。*c*タイプ*R*枝(v=0 → v=1)の*K*₄"=0~2の分裂はS1に属し、 三重線の両端の吸収線は中央の吸収線よりかなりシャープであったので、S1の分裂幅は両端の吸収 線の差(δ P1=P3-P1)を用いた。*K*₄"=3のdoubletのうち、周波数の低い側の遷移はS2に属し、 周波数の高い側の遷移はS2'に属した。S2とS2'の分裂幅はシャープな2本の吸収線の差(δ P2= P3-P2, δ P2'=P2-P1)を用いた。

 $c \rho A プ R \phi R ing-Puckering によって2本に分裂した遷移の超微細構造のパターンおよび分裂$ $幅は測定誤差内でほとんど同じであった。このことは<math>v=0 \rightarrow v=1$ の吸収線と doublet のもう一方 の $v=1 \rightarrow v=0$ の吸収線の帰属に利用できた。S1の遷移 ($v=0 \rightarrow v=1$)の分裂幅(δ P1) 16本,S2 とS2'の遷移の分裂幅 (δ P2, δ P2')それぞれ4本と3本、合計23本の分裂幅から核四極子結合定数、 $\chi_{aa} \ge \chi_{bb} を最小二乗法で求め、Table 1 に示した。観測値(<math>\chi_{aa}, \chi_{bb}$)と理 論値[MP2/6-311++G(d, p)],との差はそれぞれ 0.80 \ge 0.27 MHz である。 χ_{bb} の理論値はかなり良い 予想値である。 測定した遷移 126本を Watosn's A-reduced Hamiltonian(I[•])を用い、v=0の回転定数、 遠心力歪定数、および回転定数のv=1とv= 0の差 [$\delta(A), \delta(B), \delta(C)$],遠心力歪定数 0v=1 & v=0の差 [$\delta(\Delta_{IR}), \delta(\Delta_K)$] と tunneling splitting(Δ)を最小二乗法で合わ せ込んだ。その結果を Table 1 に示す。今回、 遠心力歪定数 $\Delta_{IK}, \delta(\Delta_{IK}), \delta(\Delta_K)$ が新たに決 定された。また $\delta(B), \delta(C)$ が一桁改善された。 DK Pの tunneling splitting、 Δ id(1.075 GHz) はアンモニア (ND₃)の 1.60 GHz に近く、シ クロペンテンの 27.3 GHz より小さい。

(分子構造): Table 2 に回転定数、 ΔI 値($L-L_a$ - L_a の観測値と計算値を示す。3種モデル("メ チレン"ボート型、椅子型、平面環型)の回転 定数(B, C)と ΔI 値を観測値と比較すると"メ チレン"ボート型の分子定数が一番近い。また 3種モデルの中で椅子型(C_i)と平面環型(C_{2h}) の双極子モーメントはゼロ、"メチレン"ボー ト型(C_2)の計算値は約1.85 D である。また 相対エネルギー(ΔE)の計算結果から一番安 定な分子構造は"メチレン"ボート型であるこ とからも指示される。結晶構造での重原子骨格 が平面環型とは異なることがわかった。

理論計算[MP2/6·311++G(d, p)]によるエネ ルギープロフィルは横軸に Ring Puckering Parameter(θ)³, 縦軸に相対エネルギーをと ると椅子型(C_i), θ =0°, は約470 cm⁻¹のバリヤ 一障壁頂上の位置にあり、等価の二つの"メチ レン"ボート型(C_2) は θ = ±90°で最小値 をとることが示された。

(Stark 効果): Ring-Puckering によって2本 に分裂した同じ遷移でも Stark 効果がさまざ

まであった。例、11¹(6,5)←10⁰(5,5) と110(6,5) ←101(5,5) の遷移では 両者とも1次の Stark 効果を示 したが前者と後者の Stark 成分の シフトは逆であった。また101(5,5) ←90(4,5)と 100(5,5)←91(4,5)の遷 移では前者は1次の Stark 効果 であるが、後者は2次の Stark 効 果を示した。1) R. B. Corey, J. Am. Chem. Soc., 60, 1598 (1938). 2) F. L. Bettens, R. P. A. Bettens, R. D. Brown, and P. D. Godfrey, J. Am. *Chem. Soc.* **122**, 5856 (2000). 3) D. Cremer and J. A. Pople, J. Am. Chem. Soc., 97, 1354 (1975).

Table 1. Reinvestigated rotational and centrifugal distortion constants and ¹⁴N quadrupole coupling constants of 2,5-diketopiperazine

	This work	Ref. 2 ^a
A/MHz	4906.4075(45)b	4906.4098(44)
<i>B/</i> MHz	1582.1367(26)	1582.1420(37)
C/MHz	1239.4135(32)	1239.4218(44)
Δ_J /kHz	0.0555(59)	0.048(8)
⊿ _{JK} /kHz	-0.101(29)	1.922(63)
Δ_K /kHz	2.032(68)	
$\delta(A)^{c/k}$ Hz	-25.8(17)	-31.4(11)
$\delta(B)$ c/kHz	10.77(32)	9.8(13)
$\delta(C)^{c/kHz}$	48.71(25)	48.9(17)
<i>δ (Длк) c/</i> kHz	-0.0273(84)	
$\delta(\Delta_K)$ ¢/kHz	0.053(27)	
⊿ ^d /MHz	1075.353(33)	1075.440(30)
$\chi_{\rm aa}$ /MHz	2.52(18)	
$\chi_{ m bb}$ /MHz	1.44(10)	
No. of fit	126	57
rms(O-C)/kHz	48.5	31

a) F. L. Bettens, R. P. A. Bettens, R. D. Brown, and P. D. Godfrey, *J. Am. Chem. Soc.* **122**, 5856 (2000).

b) Uncertainties shown in parentheses refer to the last digits and one standard deviation.

- A, B, C, Δ_J, Δ_{JK} and Δ_K are the lower inversion state.
 c) The parameters preceded by δ are the differences between corresponding rotational and centrifugal distortion constants for the upper and lower inversion states.
- d) The parameter of Δ is the tunneling splitting between the upper and lower inversion state vibrational levels.

Table 2. Comparison of predicted rotational constants, inertial defect (ΔI) and relative energy (ΔE) of 2,5-diketopiperazine and observed those (MP2/6-311++G (d, p)

the observed those (the 2/0 off + G (d, p)					
	boat	chair	planar ring		
	C_2	C_i	C_{2h}	Obsd	
A/ MHz	4924.95	4885.79	4899.93	4906.407(5)	
<i>B</i> /MHz	1574.84	1570.55	1564.14	1582.137(3)	
$O\mathrm{MHz}$	1249.45	1210.57	1203.44	1239.414(3)	
⊿I ª/uŲ	-19.04	-7.75	-6.25	-14.676(2)	
$\Delta E/cm^{-1}$	0	469	599		
rms(O-C) ^b /MHz	13	22	24		

a) $\Delta I = I_c - I_a - I_b$

b) Root-mean-square deviation between the observed and ab initio rotational constants.