4Ap04 高強度レーザー電場による 12 および Xe2 の 多光子イオン化に対するパルス幅の効果 東大院理 峰本紳一郎、酒井広文

ピーク強度 10¹³~10¹⁵ W/cm² 程度の高強度レーザー光を分子に照射 すると、多光子イオン化によって多価イオンが生成され、クーロン爆裂 を起こす。多くの二原子分子においては、クーロン爆裂により生成され るフラグメントイオンは、enhanced ionization の効果を反映してレー ザー光の偏光方向に大きく偏ることが知られている。一方、筆者らは希 ガス二量体 Rg₂ では、フラグメントイオンの角度分布に偏光依存性がほ とんど見られないことを最近見出した[1,2]。Rg₂ におけるイオン化のメ カニズムを調べるため、今回、パルス幅を変化させながら Xe₂ と I₂ から 生成されるフラグメントイオンの分布を比較した。

超音速分子線中の試料分子 (Xe₂ および l₂) に Ti:sapphire レーザー光 (ピーク強度 4×10¹⁴ W/cm²) を 照射し、多光子イオン化した。 Xe₂ Xe⁺+Xe²⁺ l₂ I⁺+I²⁺ 生成したフラグメントイオンの 45 fs Xe⁺+Xe⁺ 45 fs I⁺+I⁺ 運動エネルギー分布と角度分布

を velocity map 型イオンイメ ージング装置により測定した。 ピーク強度を一定に保ちつつレ ーザー光をチャープさせ、フラ グメントイオンの分布のパルス 幅依存性を調べた。

Fig. 1 に Xe₂ から生成される Xe⁺イオン (左) と l₂ から生成 される l⁺イオン (右) のイメー ジを示す。l⁺の場合、超短パル ス光 (45 fs) でもフラグメント の角度分布がレーザー光の偏光 方向に偏っている。また、パル ス幅が広がるにつれて運動エネ ルギーが小さくなり、それに伴 って偏光方向への偏りがさらに 顕著になっている。これは、核

Fig. 1: Abel inverted images of Xe^+ from Xe_2 (left panels) and I^+ from I_2 (right panels). The polarization direction is shown by the arrows.

間距離が伸びるにつれて、偏光方向に平行な向きを向いている分子のイ オン化確率が増大する enhanced ionization の効果がより顕著に現れた ためと考えられる。一方、Xe⁺の場合、超短パルス光 (45 fs) ではどのチ ャネルもほぼ等方的な分布を示している。また、パルス幅が広がっても 運動エネルギー分布に変化はなく、角度分布は偏光方向にわずかに偏る のみである。この結果は、Xe₂ では enhanced ionization の機構がほと んど働いていないことを示している。

偏光方向への角度分布の偏りを評価するため <<cos²q>> (q は偏光方 向とフラグメントイオンのなす角)を調べた。<<cos²q>> は等方的な分 布をしている時には 1/3、完全に偏光方向を向いている時には 1 となる。 Fig. 2 に I⁺+I⁺() および Xe⁺+Xe⁺() チャネルについて求めた <<cos²q>> のパルス幅依存性を示す。enhanced ionization の効果を反 映して、どのパルス幅においても I⁺の方が Xe⁺より大きな <<cos²q>> の 値を示す。I₂では超短パルス (45 fs)の時に <<cos²q>> = 0.4 程度であ ったものが、パルス幅が広がるにつれて徐々に大きくなり、t = 660 fs で は 0.58 になっている。一方、Xe₂ でもパルス幅が広がるとともに <<cos²q>> = 0.33)をしていたものが、t = 710 fs では<<cos²q>> = 0.35 になっている。核間距離がパルス幅によって変化していないことを考え ると、enhanced ionization よりも高強度レーザー電場によるダイナミ ック(非断熱的)な配向の効果が <<cos²q>> の変化の主要な原因となっ ていると考えられる。

講演では、I₂と Xe₂ における 多光子イオン化過程の違いを enhanced ionization の効果と ダイナミックな配向の効果から 議論する。

[1] 峰本、南條、酒井、2002 年分子 構造総合討論会 4A14.

[2] S. Minemoto H. Tanji, and H. Sakai, to be published in J. Chem. Phys.

Fig. 2: Alignment cosine $\langle \cos^2 q \rangle$ for $I^+ + I^+$ () and Xe⁺+Xe⁺ () channels as a function of the pulse width τ .