分子研¹・CREST²・ 産総研³・ 東大院理⁴ 〇岡野芳則¹、 小林速男^{1,2}、 田中 $= = = = = 3^{2,3}$ 、 藤原絵美子⁴、 小林昭子⁴

 $Ni(tmdt)_2$

拡張 TTF 型ジチオレン錯体 Ni $(tmdt)_2$ は 0.6 Kまで金属 的な伝導性を示す単一成分分子性金属である。最近この結 晶の de Haas-van Alphen 効果の測定が行われ、そのフェ ルミ面の存在が証明された。実験は磁場を a*-b* 面、b*c* 面、a*-c*面内で回転させ、磁化の振動周期の角度依存 性が測定された。

この実験結果とバンド計算の比較を行った。計算は全て 拡張 Hückel 法と強結合近似を用いたものである。

図1は以前我々が報告したフェルミ面である。これについて極値断面積の計算を行った結果が図2である。図中緑色は hole のフェルミ面(図1で水色)紫は electron のフェルミ 面(図1で赤色)の極値断面積を振動周波数に換算してプロッ

図1 Ni(tmdt)2 のフェルミ面

トしたものである。赤色のプロットが実験結果である。図の様に計算と実験結果との一致はよくなかった。図1のフェルミ面は拡張 Hückel 計算の結果から HOMO-LUMO ギャップを 0.1 eV として計算 したものである。フェルミ面はギャップの値が 0.0 eV ~ 0.62 eV まで存在する。この範囲で 0.05 eV 刻みでギャップの値を変化させた。フェルミ面の形状は変化するがよい結果は得られなかった。

図2 標準パラメータによるフェルミ面の極地断面積 (A) a軸回転、磁場は b*-c* 面内 (B) b* 軸回転、磁場はa-c面内(C) c軸回転、磁場は a*-b* 面内

そこで拡張Hückelで使う原子の軌道パラメータを変えて計算を行った。Niのパラメータを変えても フェルミ面の形状にほとんど変化がなかった為、硫黄のパラメータだけを取り替えて使用した。使用 した硫黄のパラメータを表1に示す。表の一番上に書いてあるのは暫定的につけた名前で R16,R52,R74 は Hoffmann の論文に掲載されているものである。また一番右の標準パラメータと書 いたものは著者らが通常用いているパラメータである。硫黄原子以外は表2に掲げる。

			表1 硫黄	原子のス	レーター型	原子軌道	宣のパラメー	-タ			
	S3dB		R16 ¹⁾		R52	$R52^{2}$		$R74^{3)}$		標準パラメータ	
	IP(ev)	ζ	IP(ev)	ζ	IP(ev)	ζ	IP(ev)	ζ	IP(ev)	ζ	
3s	-20	2.122	-20	1.817	-20	2.12	-20	2.122	-22	2.122	
3p	-11	1.827	-13.3	1.817	-13.3	1.83	-11	1.827	-10.5	1.827	
3d	-5.44	1.5									

図3 R16, gap = 0.105 eV で計算したフェルミ面の極地断面積 (A) a軸回転、磁場は b*-c* 面内 (B) b* 軸回転、磁場はa-c面内 (C) c軸回転、磁場は a*-b* 面内

表2	その他の)原子のス	レーター	-型原子輯	九道のハ	ペラメータ
		IP(ev)	ζ1	C1	ζ2	C2
Н	1s	-13.6	1.0			
С	2s	-21.4	1.625			
	2p	-11.4	1.625			
Ni	4s	-10.95	2.1			
	4p	-3.74	2.1			
	3d	-10.6	5.75	0.5681	2.0	0.6294

図4 R16, Gap = 0.105 eVで計算したフェルミ面

これらを用い計算した所、R16とR52、R74と著者らの使っ ているパラメータはほぼ似た様な結果を与え、これらのパラ メータは3つのグループに分けられるようである。S3dBは他 のパラメータより大きな重なり積分を与えフェルミ面も大き くなり HOMO-LUMO ギャップを 1.15 eVにするまでフェル ミ面が残っている。R16,R52は逆に重なり積分が小さくなり、 ギャップが 0.3 eV を超えたあたりでフェルミ面が消失する。

パラメータ	Calcd HOMO-LUMO Gap (e'	V) F	S消失 (eV)
S3dB	0.11259	1.16	(1.15 reamin)
R16	0.21929	0.34	(0.33 remain)
R 52	0.22370	0.32	(0.31 remain)
R 74	0.11586	0.55	(0.54 remain)
標準パラメー	夕 0.10306	0.62	(0.61 remain)

それぞれのパラメータで極値断面積を調べたところ R16 のパ ラメータで HOMO-LUMO ギャップ 0.105 eV の時、図3の ように実験結果によく一致する結果が得られた。この時のフェ ルミ面の形状を図4に示す。

また、赤外領域に現れる電子スペクトルを説明する為に (A) Ni(tmdt)₂, (B) Ni(dmdt)₂, (C) Ni(ptdt)₂, (D) Pd(dt)₂のJoint Density of Statesの計算を行ったところ、吸収スペクトル (図 5) によく対応する結果 (図6) が得られたので当日報告する。

R. Hoffmann et al., *J. Am. Chem. Soc.*, 1979, **101**, 592–598
R. Hoffmann et al., *J. Am. Chem. Soc.*, 1987, **109**, 118–124
R. Hoffmann et al., *J. Am. Chem. Soc.*, 1995, **117**, 10108–10112

図6 計算した Joint density of state