1Pp138¹³C NMR を用いた Ca@C₇₄ と Yb@C₇₄ における 内包金属の運動の比較研究

(都立大院理) 〇島根隆幸、兒玉 健、三宅洋子、鈴木信三、藤井亮輔、 西川浩之、池本 勲、菊地耕一、阿知波洋次

[はじめに]

これまでに、フラーレン内部において内包金属が運動していると報告された例は、Sc₂@C₈₄[1,2] や La₂@C₈₀[3]などの複核金属内包フラーレンのみであった。最近、我々は、単核金属内包フラーレンである Ca@C₇₄について、内包金属である Ca が D_{3h}対称の C₇₄ケージ中を運動していることを ¹³C NMR によって明らかにしてきた。[4] Ca の運動の速さは、室温では 1.3~130 kHz の間にあるということが分かり、また、運動の活性化エネルギーは約 7.3 k cal/mol と求められた。

Yb@C₇₄は、Ca@C₇₄と同様に金属からケージへ2個の電子が移動した2価タイプの金属内包フラーレンである。本研究ではCaと質量数が大きく異なるYb(約4倍)を内包したYb@C₇₄を比較対象化合物とし、¹³C NMRを測定することによって、C₇₄ケージ内での内包金属の運動の違いについて調べることを目的とした。

[実験]

Yb と炭素の混合ロッドの直流アーク放電(He 圧 500 torr、電流 40 A)によって Yb@C₇₄を含ん だススを生成した。得られたススを 1,2,4-トリクロロベンゼンで還流し、フラーレン類を抽出した。 Yb@C₇₄は多段階の HPLC によって単離し、質量スペクトルによって純度を確認した。¹³C NMR は 125MHz で測定した。溶媒に CS₂、ロック試薬に 5% 1,1,2,2-tetrachloroethane-d₂、緩和剤には chromium acetylacetonate を用いた。

[結果]

図1に Ca@C₇₄と Yb@C₇₄の吸収ス ペクトルを示す。内包された金属が異 なるにも関わらず、2 つの吸収スペク トルはよく似ている。このことは内包 された金属の価数、及び、C₇₄ケージの 構造が同じであることを示している。

図 2 に Yb@C₇₄の¹³C NMR スペクト ルの温度変化を示す。比較のために、 Ca@C₇₄の 22℃での¹³C NMR スペクト ルも示してある。積分強度比 6:3:1 のピ ークがそれぞれ 4 本、4 本、1 本のパタ ーンであることから、Yb@C₇₄ のケー ジ構造が Ca@C₇₄ と同じく D_{3h} 対称で あることが確認された。また、ブロー ドなピークとシャープなピークが混在

ST Ca@C₇₄ とYB@C₇₄の吸収スパクトル (溶媒: CS₂、室温)

し、高温になるとブロードなピークがシャ ープになることから、Ca@C₇₄ と同様に Yb@C₇₄ においても Yb がケージ内部で運 動していることが分かった。

Yb@C₇₄ と Ca@C₇₄ とでは、ケミカルシ フトに微妙な違いがあるが、これは内包金 属原子が異なることによって生じたわず かな電子状態の違いを反映したものと思 われる。

同じ温度(22℃)における Yb@C₇₄ と Ca@C₇₄の¹³C NMR スペクトルを比較して みると、Yb@C₇₄のピークが、Ca@C₇₄のピ ークに比べてよりブロードになっている ことが分かる。これは内包された Yb が Ca より遅い速度で運動していることを示し ており、質量数の違いが原因であると考え られる。

詳細について議論するために、各温度の スペクトルについて、金属の運動の速さを パラメーターとするブロッホ方程式に基 づいたフィッティングを現在行っている。

- M. Inakuma, E. Yamamoto, T. Kai, C. Wang, T. Tomiyama, H. Shinohara J. Phys. Chem. B 104, (2000)5072-5077.
- [2] Y. Miyake, S. Suzuki, Y. Kojima, K. Kikuchi, K. Kobayashi, S. Nagase, M. Kainosho, Y. Achiba *J. Phys. Chem.* **100**, 9579-9581 (1996).
- [3] T. Akasaka, S. Nagase, K. Kobayasi, M. Walchli, K. Yamamoto, H. Funasaka, M. Kako, T. Hoshino, T. Erata *Anegw. Chem. Int. Ed. Engl.* 36, 1643-1644 (1997)
- [4]藤井ら 分子構造総合討論会講演要旨集 (2002) p765.