1Pp117 LiCl Li₂O P₂O₅系イオン伝導ガラスの イオン伝導特性と微視的構造の研究

(群大院工) 越後紘介・五戸清美・花屋 実・渡邉興ー

【序】 イオン伝導ガラスは,固体電池開発のキーマテリアルである固体電解質への応用が期待 される物質系である.しかしイオン伝導ガラスにおいては,非晶性に基づく構造の複雑さにより, イオン伝導機構の詳細,および,イオン伝導に関わる微視的構造は未解明のままである.そこで 本研究では,LiCl Li₂O P₂O₅系 Li⁺イオン伝導ガラスにおいて,ガラス基質が一次元鎖ネットワ ーク構造をもつ LiCl LiPO₃系,5 量体構造をもつ LiCl Li₇P₅O₁₆(Li_{1.4}PO_{3.2})系,さらに,3 量体 構造をもつ LiCl Li₅P₃O₁₀(Li_{1.67}PO_{3.33})系について,双ローラー急冷法を用いてガラス試料の合 成を試みた.そして,得られたガラス試料について交流伝導度測定を行うとともに,LiCl LiPO₃ 系ガラスについて⁷Li MAS NMR を測定し,イオン伝導特性および NMR スペクトルの LiCl 組成 依存性を詳細に追跡することで,イオン伝導ガラスの微視的構造について検討を行った.

【実験】 (LiCl)_x(LiPO₃)_{1-x} 試料は,LiCl および LiH₂PO₄ より合成した LiPO₃ を原料とした.ガラ ス基質が 5 量体構造をもつ (LiCl)_x(Li_{1.4}PO_{3.2})_{1-x},また,3 量体構造をもつ (LiCl)_x(Li_{1.67}PO_{3.33})_{1-x} 試 料については,LiCl,および,LiPO₃ にLi₂CO₃ を加えて合成した Li₇P₅O₁₆,Li₅P₃O₁₀ をそれぞれ原 料とした.そして,原料を所定の組成比になるように秤量し,電気炉中 800 °C で均一融体化させ, これを双ローラー急冷装置を用いて室温に急冷却することにより試料を合成した.試料の非晶性 は,粉末 X 線回折 (CuK α 線,2 = 10 80°)により確認を行った.交流伝導度は,150 300 K の温度範囲,20 Hz 1 MHz の周波数領域で測定を行い,複素電気係数 *M**に基づいて解析した. ⁷Li MAS NMR (B_0 = 7.05 T, rot = 10 kHz) は室温で 1M LiCl 水溶液を化学シフトリファレンスと して測定した.

【結果と考察】 粉末 X 線回折実験においては, (LiCl)_x(LiPO₃)_{1-x} , (LiCl)_x(Li_{1.4}PO_{3.2})_{1-x} , (LiCl)_x(Li_{1.67}PO_{3.33})_{1-x} のいずれの試料においても, LiCl 組成 (x) の低い領域ではアモルファス構造 に 特 有 な 八 ロ パ タ ー ン が 観 測 さ れ , (LiCl)_x(LiPO₃)_{1-x} 系 で は x > 0.475 , (LiCl)_x(Li_{1.4}PO_{3.2})_{1-x}および(LiCl)_x(Li_{1.67}PO_{3.33})_{1-x}系 では x > 0.55 の組成領域で,LiCl 結晶に基づく 回折ピークが観測された.この結果から,これ ら 試 料 の ガ ラ ス 形 成 組 成 領 域 は , (LiCl)_x(LiPO₃)_{1-x} で は 0 $\leq x \leq 0.475$, (LiCl)_x(LiPO₃)_{1-x} あよび (LiCl)_x(Li_{1.67}PO_{3.33})_{1-x} では 0 $\leq x \leq 0.55$ と決定された.

図1に, (LiCl)_x(LiPO₃)_{1-x} ガラス試料の交流伝

図1. (LiCl)_x(LiPO₃)_{1-x}ガラス試料における Li⁺イオン伝導の緩和時間の温度依存性.

導度測定から得られた,Li⁺イオン伝導における緩和時間のアレニウスプロットを示す.LiCl組成の異なるいずれの試料においても,緩和時間の温度依存性は良く直線上にのっており,室温以下

の温度領域で伝導性 Li⁺イオンの置かれたエネ ルギー環境は実質的に変化しないことを示して いる.図2に,この直線の傾きから求めた Li⁺ イオン伝導の活性化エネルギー ($\Delta \epsilon_a$)のLiCl組 成 (x)依存性を示す.(LiCl)_x(Li_{1.4}PO_{3.2})_{1-x}および (LiCl)_x(Li_{1.67}PO_{3.33})_{1-x}ガラスにおいても同様な結 果が得られ, $\Delta \epsilon_a$ のx依存性を図2にあわせて示 す.いずれの系においても, $\Delta \epsilon_a$ はxの増大とと もに連続的に減少しており,これらガラス試料 における伝導性 Li⁺イオンは,おもに LiCl によ ってもたらされることを示している.さらに, LiCl 組成が高い領域では $\Delta \epsilon_a$ がガラスネットワ

ーク構造によらず一定値に漸近する傾向が見出された. この結果は,ガラスネットワーク構造の異なるいずれの 系においても,LiCl組成の高い領域ではガラス中に非晶 性構造を有する LiClの集合領域が生成するものとして 合理的に解釈された.

図3は, (LiCl)_x(LiPO₃)_{1-x}ガラス試料の⁷Li MAS NMR の測定結果を表し,図4に⁷Li NMR 信号の化学シフト (δ)のLiCl 組成(x)依存性を示す. $x \le 0.30$ のガラス試 料では,⁷Li NMR スペクトルに1つのブロードな信号の みが観測された.一方,x = 0.40およびx = 0.45 試料で は,ブロードな信号の他にシャープな信号が観測された. このシャープな信号の化学シフトは,図4に示すブロー

ドな信号の δ のx依存性をx=1に外挿した値, すなわちアモルファス LiCl に予想される化学 シフトとよく一致している.したがって,この 結果はガラス中での非晶性 LiCl 集合領域の生 成を支持するものであり,観測されたシャープ な信号は非晶性 LiCl 集合領域に含まれる Li⁺イ オンによるものと結論された.

本研究の結果は,LiCl Li₂O P₂O₅系ガラス における構造の不均一性を明確に示しており, LiCl 組成が高い領域では,ガラスネットワーク の間隙に非晶性 LiCl 集合領域が生成・発達し, 高 Li⁺イオン伝導性が発現するものと考えられ

図 2 . Li⁺イオン伝導の活性化エネルギーの LiCl 組成依存性.

る.さらに,本研究で見積もられた x = 1 における $\Delta \varepsilon_a$ および δ の値は,バルクのアモルファス LiCl に対応するものと考えられ,興味がもたれる.

udd