1Pp085 2 価の Eu イオンを内包したフラーレンの

多周波 EPR による研究

(分子研¹・都立大院理²・阪市大院理³)○松岡秀人¹、尾澤紀生²、兒玉健²、 西川浩之²、池本勲²、菊地耕一²、古川貢¹、佐藤和信³、塩見大輔³、 工位武治³、加藤立入¹

【序論】

これまで、様々な金属内包フラーレンの生成・単離、およびその電子・分子構造の解明を目的 とした研究が多くなされてきた。本研究では、S = 7/2を有する Eu^{2+} イオンを内包した $Eu@C_{82}$ お よび $Eu@C_{74}$ の生成・単離を行い、多周波(X, W-band) EPR による研究を行った。

【実験】

X-band EPR 測定は BRUKER 社製 ESR 分光器(ESP300E)を用いて行った。また、スウィッチン グタイプのデュアルモードキャビティーを用いることにより、マイクロ波振動磁場 B_1 を静磁場 B_0 に対して垂直に照射する通常の垂直励起 EPR 測定に加え、平行に照射する平行励起 EPR 測定 も行った。輻射場のモードを変えた測定を行うことにより、禁制遷移の帰属が可能になるだけで なく、ゼロ磁場分裂定数の大きさに関する情報も得ることができる。また、W-band CW-EPR の測 定は BRUKER 社製 ESR 分光器(E680)を用いて行った。

【結果】

 C_{82} ケージには対称性の異なるいくつかの異性体が存在するが、本研究で生成・単離された Eu@C₈₂ は C_8 , C_2 , C_{2v} 対称性を有する 3 つの異性体である。以下では、それぞれ Sample 1, 2, 3 と する。一方、 C_{74} ケージには孤立五員環則(Isolated Pentagon Rule : IPR).を唯一満たすケージとし て D_{3h} 対称性のものしか存在しない。以下では、 $Eu@C_{74}$ を Sample 4 とする。

本研究ではまず、Sample 1, 2, 3, 4 に対し通常の垂直励起 X-band EPR 測定を(B₀ L B₁)を 1.5K

で行った。Fig.1aには、Sample1に対 して観測されたスペクトルを示す。 Sample1と同様にすべてのSampleに 対し、低磁場側(100~200 mT付近) で強いシグナルが観測された。これら のシグナルは、X-bandマイクロ波周 波数($v \sim 0.3 \text{ cm}^{-1}$)に匹敵するゼロ磁 場分裂定数を有する高スピン系によ く見られるものであり、波動関数の mixingにより生じる禁制遷移と帰属 される。この帰属の妥当性は、禁制遷 移の遷移強度のみを増大させる平行 励起 EPR 測定($B_0 / / B_1$)により確か

めることができた。また、低磁場側に おいて、このような禁制遷移が観測さ れることから、ゼロ磁場分裂定数の大 きさは X-band マイクロ波周波数 (v ~ 0.3 cm^{-1}) 以下であることが明らかとな った。より詳細な解析を行うため、本 研究ではさらに W-band EPR スペクト ル測定を行った。Fig. 2a には、Sample 1 に対し 20K で観測された W-band EPR スペクトルを示す。X-band スペクトル とは異なり、g~2 付近に強いシグナル を示す Symmetrical なスペクトルを与 えた。

スペクトル解析は、高次の微細構造

Fig.2 Sample 1 の W-band EPR スペクトル; 20 K, 93.8668 GHz.

項まで考慮したスピンハミルトニアンを用い、hybrid-eigenfield 法を基にしたスペクトルシミュレーション法により行った。得られたシミュレーションスペクトルはどれも実測をよく再現した。 Sample 1 に対して得られた垂直励起 X-band スペクトルおよび W-band スペクトルのシミュレーションをそれぞれ Fig.1b と 2b に示す。また、Sample 1 から 4 に対して決定された g, b_2^0, b_2^2 値を Table に示す。 b_2^0 の符号は W-band スペクトルの温度変化を解析することにより決定した。 D_{3h} 対称性を有する C_{74} ケージ内で、Eu²⁺イオンが中心の 3 回回転軸上に存在する場合、Sample 4 に対し て $b_2^2 = 0$ が得られる。しかし、実際に得られた値は $b_2^2 \neq 0$ であることから、Eu²⁺イオンは Eu@C₇₄ のケージ内で中心(3 回回転軸)からはずれた位置に存在すると結論付けられる。一方、Sample 1 から 3 では、3 回以上の回転軸は存在しないため b_2^2 は有限の値を持つと期待され、実際に $b_2^2 \neq 0$ の実験結果が得られた。また、最も対称性の低い Sample 1 に対し非常に小さな b_2^2 値が得られ、ま た Sample 2 に対しては他の Eu@C₈₂ 異性体に比べて一桁大きな b_2^2 値が得られたことは、ゼロ磁場 分裂定数は中心金属近傍ケージとの相互作用によって決定されることを推定させる。実際、半経 験的な Superposition Model によりこのことは確かめられ、実測のゼロ磁場分裂定数をよく説明す ることができた。

	Sample 1 $C_{\rm S}$	Sample 2 C_2	Sample 3 C_{2v}	Sample 4 D_{3h} (C_{2v})
g _x	1.9950	1.9919	1.9925	1.9938
$g_{ m y}$	1.9930	1.9928	1.9921	1.9891
gz	1.9946	1.9933	1.9939	1.9883
b_2^{0} / cm^{-1}	0.2918	0.2915	0.2724	0.1279
b_2^2 / cm^{-1}	0.0074	0.0605	0.0041	0.0422

Table Sample 1 から 4 に対して決定されたスピンハミルトニアンパラメータ

ただし、 $b_2^0 = D, b_2^2 = 3E$