1Pa069

回転輪郭シミュレーションによるピレン - ベンゼン1:1錯体の構造

(日大院工) 〇吉田 功児、奥山 克彦、沼田 靖、鈴鹿 敢

【序論】我々は数年前からピレン - ベンゼン1:1 錯体の研究を行って来た。現在まで得られた結果をまとめると、励起状態ダイナミクスに関して、S₁ 状態では、振動過剰エネルギーに依存し、エキサイプレックス現象が見られた(再確認中)。S₂状態ではエキサイプレックス現象は見られず、 錯体解離が起こり、回転励起された S₁0+1113 cm⁻¹振電準位から蛍光を発することが明らかにされた。錯体は、S₁領域では単体から 174 cm⁻¹、S₂領域でも 410 cm⁻¹低エネルギー側に観測されている。このように興味深い結果を報告してきた。しかし、錯体構造に関しては全くわかっていない。

昨年の本討論会では以下の三つ観測事実をもとにひとつの推定構造を提案した。まず、一つに 錯体ピークが低エネルギー側にシフトすることから、ピレンは電子受容的な役割をすると考え、 ベンゼンπ電子にピレン水素が水素結合している。二つ目に、錯体で振電相互作用がより顕著に 見えることから、ピレンの分極が大きくなる位置と考え、ベンゼンはピレンの分子長軸方向に錯 合している。最後に錯体解離により回転励起が起こることから、錯体解離ベクトルがピレン重心 を通っていない構造と考えた。さらに、これらの実験事実から推定される構造は、MM2 による錯 体構造最適化の結果と一致した(図1)。この結果をふまえ、今回はエタロンレベルでの様々な回 転温度による回転輪郭スペクトルを測定し、シミュレーションすることで錯体構造を求め、推定 構造と比較検討した。

【実験】実験はピレンをサンプル室内で 160 ℃前後まで加熱し、ベンゼンは温度コントローラー を用いて-15 ℃に保ち、蒸気をサンプル室に流し込み、He キャリヤーガス (5 atm) に混入させた。 この条件で超音速分子流中にピレン - ベンゼン van der Waals 1:1 錯体が最も効率よく生成され る。XeCl エキシマー励起の色素レーザーのキャビティにエタロンを装着し、高分解能が 0.04 cm⁻¹の回転輪郭スペクトルを測定した。He の圧力を変えて様々な回転温度条件での回転輪郭スペ クトルを測定し、シミュレーションすることで構造を求めた。

【結果と考察】ジェット冷却されたピレン単体の $S_0 \rightarrow S_1$ 蛍光励起スペクトルは許容遷移である a_g ピークと振電相互作用による b_{3g} ピークで構成させている。図 2 はベンゼンを混入された同領域の スペクトルである。*印をつけたのがピレン - ベンゼン 1:1 錯体よるピークで b_{3g} ピークのみに 付随し、174 cm⁻¹ ほど低エネルギー側に現れている。図 2 の下は 0+1113 cm⁻¹ ピーク付近を拡大し て示している。この程度の分解能測定でも、単体と比べ錯体のピーク幅が細いことがわかる。錯 体になることで回転定数が小さくなっているためで、多原子分子の錯体では一般的な現象である。 高分解能回転輪郭スペクトルは a_g (0+513 cm⁻¹)、 b_{3g} (0+1113 cm⁻¹) 錯体ピーク b_{3g} (0+1113 cm⁻¹)

(図 3)の三ヶ所で行った。ここでは表さないが ag単体のピークでは P、R ブランチは現れ、Q ブランチが現れていなかった。これは、典型的な垂直型を示している。それに対し、振電相互作用による b3g 単体ピークでは、P、Q、R ブランチが明瞭に現れ、平行型であった。錯体はベンゼンが付く位置によってこま軸が変わる可能性がある。しかし、図 3 で示すように明瞭にQブランチが現れているので、ベンゼンは図1に示したようにピレン長軸延長上に錯合し、こま軸の変化はないと考えられる。回転輪郭スペクトルの測定は、ヘリウム圧を 1から5気圧まで変化させ、様々な回転温度条件で行っている。

図1 MM2 計算による最適化構造

