要旨
最大収束半径摂動法(maximum radius of convergence (MAXRc) perturbation theory)は、Rayleigh Schrodinger摂動論の1形式であり、収束半径を最大にするように最適化された摂動法である。本研究ではこの理論を用いていくつかの系の計算を行い、エネルギー、収束の速さ、ポテンシャルカーブの形状等を調べ、その有用性を確かめる。

ABSTRACT
The maximum radius of convergence (MAXRc) perturbation theory is based on a modified form of Rayleigh-Schrodinger perturbation theory that permits the energy denominators to be chosen arbitrarily. MAXRc perturbation theory chooses its energy denominators so that the radius of convergence of its perurbative expansion is (approximately) optimal. The convergence behavior of this method is tested by performing perturbative calculations to high-orders on a number of test systems including H2, LiF and Be; comparisons are made with other approaches including Moller-Plesset perturbation theory.