アルカン類の強レーザー場イオン化質量スペクトル 新潟薬大 石井麗花,日野奈穂子,坂井大晃,城田起郎,〇星名賢之助

Intense Laser Field Ionization mass spectra of Alkanes

Reika Ishii, Naoko Hino, Masaaki Sakai, Tatsuto Shirota, ∘Kennosuke Hoshina Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Japan

[Abstract] Ionization and dissociation processes of alkanes in intense laser fields were investigated using mass spectrometry of produced ions. Two-body dissociation channels of parent dications were identified for *n*-pentane, *n*-hexane, and *n*-heptane from measured mass spectra with weak but clear side peaks. These minor channels were observed when the laser polarization direction(ε) is perpendicular to the TOF axis, indicating that ionization probability increases when ε is perpendicular to the long axis of the alkanes. Based on quantum chemical calculation of dications and their dissociation pathways, and shapes of molecular orbitals of neutral alkanes, we proposed a possible mechanism for the two-body dissociation channels; A one-electron ionization from HOMO-1, which has a higher ionization probability at perpendicular direction to the long axis of molecules, followed by the second one-electron ionization from HOMO produces a triplet metastable dication. Calculated kinetic energy release of two-body dissociation from the triplet dication shows a good agreement with observed ones.

【序】 近赤外短パルスレーザーによるイオン化は、トンネルイオン化やそれに続く 再衝突など、通常の光イオン化や電子イオン化とは異なる現象を伴う.例えば、2重 イオン化が起こる 10¹⁴Wcm⁻²程度の光電場強度では、O₂, N₂, CO₂のトンネルイオン化 確率の電場方向依存性に HOMO の形状が反映されることが見出されている[1].メイ ンチャネルは HOMO からのイオン化であるが、それに加えて、内殻の HOMO-1、 HOMO-2 などからのイオン化も、微弱ながらマイナーチャネルとして寄与する可能性 が理論的に報告されている[2,3].今回私たちは、アルカン類を対象に近赤外フェムト 秒レーザーイオン化で観測されるイオンの質量スペクトルに現れたマイナーチャネ ルに着目した.イオン生成のレーザー電場方向依存性と量子化学計算に基づき、イオ ン化機構および反応経路を明らかにすることを試みた.

【方法 (実験・理論)】対象分子である *n*-pentane, *n*-hexane, *n*-heptane 蒸気を,背圧 100 kPa 程度で真空槽にパルスバルブにより導入した.分子線に対して垂直方向から 近赤外フェムト秒レーザーを集光し,生成したイオン種を飛行時間型質量分析器によ り検出した.レーザー照射条件は,波長 795 nm,時間幅 100 fs,電場強度 最大で 5×10¹⁴Wcm⁻² である.量子化学計算は,Gaussian09 を用いて行い,構造最適化計算を DFT 法,エネルギー計算は CCSD(T)法を用いた.

【結果・考察】Figure 1 に *n*-pentane の fs レーザーイオン化により生成したイオン種 の質量スペクトルの $C_2H_n^+$ および $C_3H_n^+$ 領域を示す. 各質量を中心としてピークは初 期運動エネルギーが小さい一価イオンからのフラグメントと帰属され, $C_2H_n^+$ (*n*=0-5), $C_3H_n^+$ (*n*=0-7)に観測されている. これらは, レーザーイオン化と解離を繰り返してる 断片化された生成物と考えられる.次に、サイドピークに着目すると、 $C_2H_5^+$ および $C_3H_7^+$ に幅の狭いピークが観測されている.これらは、同じ運動量とレーザー偏光依存を持つことから、二重イオン化からの2体解離と帰属される.全運動エネルギーは 3.32 eV である. Figure 2 に示すように、イオン収量はレーザー偏光方向が分子軸長軸方向に垂直方向で増大する.これは、他の断片イオン信号がレーザー偏光方向に優勢 に射出されるのとは異なる傾向である.

我々は、量子化学計算を用いて、n-pentane 2 価イオン ($C_5H_{12}^{++}$) からの解離経路を 調べた、その結果、二価イオンにおいて分子内水素転位を伴わない場合、三重項の C5H12⁺⁺が準安定構造となることが分かった.これは、2つの軌道に電子スピンがそれ ぞれ分散されることによる、電荷の局在化が軽減されるためと予想される. さらに、 三重項の二価イオンには、二体解離過程 C₅H₁₂⁺⁺(T) → C₂H₅⁺(T) + C₃H₇⁺(S) があるこ とが計算より示された (Figure 3). この時の最大運動エネルギーは 3.44 eV であり, これは今回観測された実験値 3.32 eV に近い値である. レーザー偏光方向依存性につ いては、Figure 4 の分子軌道の形状に基づくと、次のように推測される. HOMO から のトンネルイオン化は、明らかに長軸方向で確率が高くなる.多くの断片化信号は TOF 軸方向に優勢に観測されており, HOMO からのイオン化で始まる多重イオン化 がメジャーチャネルであることを示している.一方、今回の実験と計算からは、二体 解離のピークは3重項状態となること、レーザー偏光方向と分子長軸が垂直であるこ とが望ましい.これを満たす機構として, Figure 1 のθが大きくなるとイオン化確率 が増大する HOMO-1 からのイオン化, それに続くトンネルイオン化あるいは再衝突 による HOMO からのイオン化で三重項状態が生成するのが、有力なイオン化過程で あると考える.

同じようなレーザー偏光依存性を伴うマイナーチャネルは, *n*-hexane や *n*-heptane でも観測された.これらも,量子化学計算に基づき三重項状態二価イオンからの二体 解離と帰属され,この機構を支持するものとなった.

Figure 1: $C_2H_n^+$ mass region of fragment ions produced by fs laser ionization of n-pentane measured by linear and circularly polarized fs laser pulses.

Figure 2: Dependence on laser polarization direction of $C_2H_5^+$ (side peaks).

Figure 3: Possible reaction pathway for two-body explosion of C₅H₁₂⁺⁺.

Figure 4: Molecular orbitals of C₅H₁₂.

【参考文献】[1] D.Pavicic et al. *Phys.Rev. Lett.* **98**, 243001 (2007). [2] S.Petretti, et al. Phys. Rev. A **80**, 063411(2009). [3] H.Liu, et al. Phys. Rev.A, **88**, 061401(2013)