特異値分解によって得られる自然摂動軌道による分極率の解析

首都大院理 ○宮本優弥,波田雅彦

Analysis of polarizability by natural perturbation orbital (NPO) obtained by singular value decomposition (SVD)

•Masaya Miyamoto, Masahiko Hada Department of Science, Tokyo metropolitan University, Japan

[Abstract]

We developed natural perturbation orbital (NPO) which is proper to an external field and applied it to surface enhanced Raman scattering (SERS) of Ag_nCO (n=2, 8, 20). We found that the intensity of SERS became larger by increasing cluster size of Ag_n and interaction of the Ag cluster and CO was similar among these clusters while the number of nodes in the orbital of the Ag clusters changed.

【序】

分極率は外部電場に対する応答物性の1つで、量子化学計算によって得られる分子 軌道はその傾向を解釈する上で非常に便利である。しかし、一般に軌道の外場に対す る応答は複雑で解釈は困難である。

そこで本研究では外場に対して適切な軌道である自然摂動軌道 (NPO) を開発した。 さらに、本手法を用いて、分極率の座標微分であるラマン散乱、具体的には、Ag クラ スターに吸着した CO 分子の表面増強ラマン散乱 (SERS) を対象にその増強機構のク ラスターサイズ依存性を検証した。

【理論・計算方法】

外場に対して1次の占有軌道 $\psi_a^{(l)}$ は0次の仮想軌道 $\psi_r^{(0)}$ によって以下のように展開される。

$$\psi_a^{(1)} = \sum_r^{virt} U_{ra}^{(1)} \psi_r^{(0)}, \tag{1}$$

ここで、 $U^{(1)}$ は変換行列で、その要素は展開係数を表す。自然摂動軌道は $U^{(1)}$ を特異値分解する軌道のユニタリ変換によって得られる。

$$\tilde{\psi}_a^{(1)} = \lambda_a \tilde{\psi}_{a+N_{occ}}^{(0)}, \qquad (2)$$

ただし、んは特異値である。これにより、分極率テンソル成分は以下のように書ける。

$$\alpha_{\rho\sigma} = 2\sum_{a}^{occ} \left\langle \tilde{\psi}_{a}^{(0)} \middle| \mu_{\sigma} \middle| \tilde{\psi}_{a+N_{occ}}^{(0)} \right\rangle \lambda_{a}.$$
(3)

ラマン散乱の強度はラマン散乱テンソルの二乗に比例し、非共鳴条件下では Placzek の分極率近似によって以下のように近似できる。

$$a_{\rho\sigma} \cong \left\langle f \left| \alpha_{\rho\sigma} \right| i \right\rangle \propto \left(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_k} \right)_0, \tag{4}$$

ただし、 Q_k は基準座標である。

Ag クラスターとして Ag₂(D_{∞h})、Ag₈(D_{2d})、Ag₂₀(Td)を採用し、構造最適化および静 的分極率の計算を行った。計算手法はそれぞれ、B3LYP/LanL2DZ(Ag),6-311G*(C,O)、 CAM-B3LYP/LanL2DZ(Ag),6-311+G*(C,O)を用いた。CO 伸縮に対応した基準座標に対 する分極率の微分は変位を 0.001 Å とした 3 点近似で求めた。

【結果・考察】

AgnCO (n=2, 8, 20)および CO のラマン散乱テンソルの二乗を Figure1 に示す。これ を見ると、Ag クラスターが大きくなるにつれてラマン散乱の強度がより増幅されて いることが分かる。AgnCO (n=2, 8, 20)において主要な寄与を持つのは yy 成分である。

次にラマン散乱テンソルの yy 成分に寄与するカップリングを見るために NPO による解析を行った(Figure2)。これを見ると、yy 成分に寄与するカップリングは一つで 特異値が最も大きいカップリングであることが分かる。

最後にカップルする軌道対を Figure3 に図示した。これを見ると、Ag クラスターと CO との間の相互作用は類似しており、クラスターサイズが大きくなるにつれて Ag ク ラスターの軌道の節の数が多くなることが分かった。

Figure 1. Square of Raman scattering tensors for Ag_nCO (n=2, 8, 20) and CO

Axes of external electric fields are selected as principle axes of polarizability tensors.

500 424 400 Ag₂CO 300 251 Ag₈CO 200 Ag₂₀CO a_{yy} 100 0 -100 -200 192 -300 1 2 3 4 5 6 The subscript *i* of NPOs

Figure 2. NPO analysis of yy component of Raman scattering tensors for Ag_nCO (n=2, 8, 20)

NPOs are sorted by descending order for singular values and showed only 6 orbitals.

Figure 3. Most contributed NPOs of Ag_nCO (n=2,8,20): occupied orbitals (top) and virtual orbitals (bottom)