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[Abstract] The development of efficient linear-scaling algorithms alongside steady increases 
in computational power have made ab-initio calculations with thousands of atoms more and 
more common place. However, compared to calculations on small systems, there still remains 
a deficiency in the kinds of tools available to post-process and analyze the results. In this talk, 
we will discuss new algorithms and computational techniques we have been developing to 
help interpret the results of calculations in the linear-scaling regime. One key approach to 
understanding large systems is the ability to partition a system into smaller building blocks. In 
this talk, we will consider how to automatically decompose a system into building blocks 
using the information in the one particle density matrix. We will demonstrate the utility of 
these tools by presenting an analysis of various biological systems in realistic environments.  

[Introduction] Commonly used computational techniques for computing the properties of 
molecular systems from first-principles are often limited to systems of fewer than one 
thousand atoms due to computational costs that grow cubically or worse with the size of the 
system. In order to overcome these bottlenecks, linear-scaling methods both for the 
construction of the Hamiltonian and for computing the density matrix have been 
developed[1]. However, while these techniques can enable calculations on larger molecules in 
more realistic environments, this increase in system size also leads to an increased challenge 
in interpreting calculation results. This challenge is made even more difficult by deficiencies 
in analysis tools that can efficiently be applied to large systems. 

[Methods] One of the main bottlenecks that needs to be avoided when performing linear-
scaling calculations is the computation of the density matrix through the eigendecomposition 
of the Hamiltonian. Linear-scaling methods directly compute the density matrix using 
methods such as the Fermi Operator Expansion, density matrix minimization, density matrix 
purification, etc, which can effectively exploit the sparsity of the density matrix. While these 
methods allow for the efficient calculation of the ground state density, information about the 
eigenspectrum is lost.  

The basis of these diagonalization free methods is the calculation of a projector on to the 
occupied subspace of a matrix. By changing the target subspace, these methods can also be 
employed to slice up the eigenspectrum into arbitrary patches, which might then be 
recombined to recover the full eigenspectrum[2]. In many cases, the projectors associated 
with these patches of the spectrum also have significant sparsity, allowing for an efficient 
divide and conquer approach to computing the eigenspectrum. Once a local energy envelope 
has been chosen, we might also investigate the locality in space using the sparsity of the 
density matrix. Mohr et al.[3] has shown that a good measure for the locality of the region is 
whether the sub-density matrix associated with a given region is idempotent. 



[Results and Discussion] In Fig. 1, we plot the eigenspectrum of a small protein (1L2Y [4]) 
in a salt water solution computed using the linear scaling version of BigDFT[5]. The density 
matrix is moderately sparse, with about 14% of its entries being nonzero. We have also 
computed the density matrices associated with only certain subsets of the energy spectrum. 
While arbitrary energy regions can lead to significant fill in, if these subset regions are chosen 
well, a significant amount of sparsity remains. This locality in space and energy allows for 
efficient calculation of the molecular orbitals of this system. This information, combined with 
the purity indicator metric, allows for the partitioning of large systems into smaller building 
blocks. 
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Fig. 1. Density matrix sparsity for different energy regions.


