2P036

赤外レーザーpump-probe分光を用いた $CH_3F/p-H_2$ 結晶の $p-H_2$ の $Q_1(0)$ 遷移の測定による点欠陥の局所歪の研究

^¹東工大理 ○中井川晃¹, 金森 英人¹

Study of local distortions of the point defects by measuring the Q_1 (0) transition of p- H_2 in CH_3F/p - H_2 crystal using infrared laser pump-probe spectroscopy

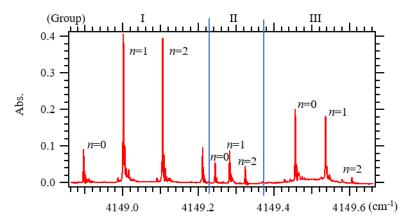
○Akira Nakaigawa¹, Hideto Kanamori¹ Department of Physics, Tokyo institute of technology, Japan

[Abstract]

We observed the $Q_1(0)$ transitions of p- H_2 induced by CH_3F doped in p- H_2 crystal by using infrared pump-probe laser spectroscopy. Several peaks are classified by not only the n-th number of $CH_3F(ortho-H_2)_n$ cluster model but also three sets of equal interval series. Further, all those peaks are accompanied with a series of satellite peaks consist of more than six that is the number of the next nearest site. We need to make a new model for the induced transition mechanism in the p- H_2 crystal.

【序】

固相でも極めて細いスペクトルを持つことで知られる p- H_2 に異なる分子をドープすることによって p- H_2 の新しいピークが発生することが多くの分子で確認されている。 我々はその中でも CH_3F をドープした際に発現するピークについて、 CH_3F - $(ortho-H_2)_n$ クラスターモデルを用いて帰属をつけることに成功した[1.2]。


その一方でこのスペクトルは CH_3F の濃度によってスペクトルの様子が異なることが FTIR を用いた実験で知られている[3]。そこで我々はレーザー分光を用いてより高分解能な測定を行い CH_3F 濃度の変化によるスペクトルの変化を観測した。

【方法 (実験)】

実験には二種類の CW レーザーを用いた pump-probe 分光を用いる。一つはドープ された CH_3F によって誘起された $p-H_2$ の $Q_1(0)$ ピークを観測するための波長 $2.4\,\mu$ m の 赤外 DFB 半導体レーザー、もう一つは CH_3F の CF 伸縮振動モードを pump し、結晶

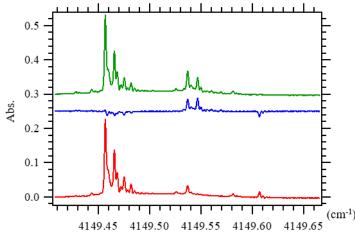
スターの存在比を変化させる 9μ m の赤外 QC レーザーである。この二つのレーザーを結晶の同じ場所に当て、ターの存在比の変化に伴うーの存在比の変化に伴うのP- H_2 の $Q_1(0)$ ピークの変化を観測しその相関をとる。これを用い CH_3F - $(ortho-H_2)_n$ クラスターで得られている結果を用いて p- H_2 の $Q_1(0)$ ピークの解析を行う。

内の CH₃F(ortho-H₂)_n クラ

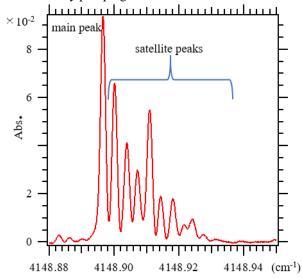
Fig. 1 Spectrum of $Q_1(0)$ peaks of p- H_2 at ortho- H_2 concentration of 1000 ppm and CH_3F concentration of 40 ppm.

【結果・考察】

今回は $Q_1(0)$ 遷移として得られる 1 群のピークの帰属・分類に注目して分析を行った。


(1) グループの再確認と新ピーク

CH₃F をドープした際の *p*-H₂ Abs. の O₁(0)の例を Fig.1 に示す。 これらのピークについては、 pump 光による depletion 実験に よって、n(=0,1,2、3)を指定した CH₃F-(ortho-H₂)_n クラスターか らのピークとして分類される。 一方、これらのピークは等間隔 な3つのシリーズを形成して いるので、それらを I,II,III グループと して分類することも可能である。この 等間隔に現れるピーク群を構成する ピーク数は、従来4.3.2本としてきたが、 今回の測定でグループ III に新たなピ ークが観測された(Fig. 2)。これによっ


(2) サテライトピークの解析 今回の実験では高い S/N での測定に成功し、Fig. 1 や Fig. 2 にみられるように $p-H_2$ の $Q_1(0)$ ピークの強いメインピークだけでなく、その肩の部分にある弱いサテライトピークについても精度よく測定できた。その結果、サテライトピークは従来の予想よりも多くの本数存在することが明らかになった(Fig. 3)。サテライトピークについて、従来は CH_3F -($ortho-H_2$) $_n$ クラスターのサテライトピークの説明に用いられた第

て、各グループの構成ピーク数は皆等

しい可能性がでてきた。

Fig. 2 Expanding the group III. Before pumping n=2(red), after pumping(green) and difference(blue). There is a peak that decreases by pumping n=2 around 4149.61cm^{-1} .

Fig. 3 Peak from n=0 in the group I. In addition to the main peak at 4148.896 cm⁻¹, 9 or more peaks can be confirmed.

二近接サイトの ortho- H_2 もクラスターに考慮した CH_3F -(ortho- $H_2)_n$ -(o

以上、今回の結果からは CH_3F - $(ortho-H_2)_n$ -(ortho

【参考文献】

- [1] 京都, 第17回分子分光研究会, F15 (2017).
- [2] つくば、第18回分子分光研究会、(2018).
- [3] K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119, 4731 (2003).