# 光格子中の極低温リュードベリ原子集団の 多体ラムゼー干渉実験装置の開発

<sup>1</sup>奈良先端科学技術大学院大学・先端科学技術研究科、 <sup>2</sup>分子科学研究所・光分子科学研究領域、<sup>3</sup>総合研究大学院大学・物理科学研究科 〇松本清張<sup>1</sup>、田中陽<sup>2</sup>、溝口道栄<sup>2,3</sup>、Yichi Zhang<sup>2</sup>、 武井宣幸<sup>2,3</sup>、香月浩之<sup>1</sup>、柳久雄<sup>1</sup>、大森賢治<sup>2,3</sup>

## Construction of a many-body Ramsey interferometer of ultracold Rydberg atoms in an optical lattice

<sup>o</sup>Kiyoharu Matsumoto<sup>1</sup>, Akira Tanaka<sup>2</sup>, Michiteru Mizoguchi<sup>2,3</sup>, Yichi Zhang<sup>2</sup>, Nobuyuki Takei<sup>2,3</sup>, Hiroyuki Katsuki<sup>1</sup>, Hisao Yanagi<sup>1</sup>, Kenji Ohmori<sup>2,3</sup>
<sup>l</sup>Graduate School of Science and Technology, NAIST
<sup>2</sup> Department of Photo-Molecular Science, IMS
<sup>3</sup> The Graduate University for Advanced Study, SOKENDAI

### (Abstract)

Many-body correlations play an important role in physical phenomena such as the emergence of superconductivity and magnetism. Solving such quantum many-body problems is thus one of the central goals of modern sciences. In our previous study, we have generated a strongly correlated ultracold Rydberg gas by broadband picosecond pulsed-laser excitation of a disordered ensemble of rubidium atoms in an optical dipole trap and observed its many-body electron dynamics by time-domain Ramsey interferometry with attosecond precision [1-4]. We apply this approach to rubidium atoms trapped in an optical lattice. This would allow us to uncover more precise many-body dynamics hidden behind averaging over the disordered ensemble. To perform such an experiment, the long-term stability of the experimental system is required, including laser-frequency stability for laser cooling. In this poster, we discuss the long-term stability of our laser frequency and other possible technical improvements.

### 【序】

多体相互作用は、固体中における超伝導 や磁性の発現から溶液中の薬剤分子の化 学反応に至るまで、様々な物理・化学現象 において本質的な役割を果たしており、こ れを解決することは現代科学における重 要な課題の1つである。我々は光格子中の 極低温ルビジウム原子集団に対してピコ 秒パルスレーザーによるアト秒精度の時 間領域ラムゼー干渉実験を適用すること によって、強相関リュードベリ原子集団を 生成し、そこでの多体電子ダイナミクスの 観測・制御を行っている[1-4]。長時間に及 ぶ測定の間、実験条件を均一に保つために



**Fig. 1** Optical setup for frequency-lock system based on saturated absorption spectroscopy

実験システムを長期安定化する必要がある。例えば、冷却されたルビジウム原子集団 を長時間に渡り安定して供給する必要がある。そこで我々は磁気光学トラップに用い るRepump レーザーの周波数ドリフトを100 kHz/week に抑えることを目標に飽和吸収 分光による周波数ロックの安定化に取り組んだ。磁気光学トラップとは、3 組の対向 するレーザー対を原子に対して照射すると同時にアンチへルムホルツコイルによる 四重極磁場を発生させ、原子の冷却と捕捉を行う原子トラップの一種である。

#### 【方法 (実験・理論)】

図1 に飽和吸収分光の測定系を示す。光源は DBR レーザーで、その中心波長は 780nm である。 pump 光はガスセル内の原子に吸収され、pump 光と重なる probe 光は原子に吸収されず PD(Sig) により検出される。PD(Sig)で得た信号から PD (Ref) で得た信号を引くことにより最終的な 吸収信号を取得する。図 2 にルビジウム原子の 超微細構造と Repump レーザーの対象となる原 子遷移を示す。Repump レーザーの周波数は 5S<sub>1/2</sub>, F=1から5P3/2, F'=1とF'=2への遷移のクロスオ ーバーにロックしており、そこから音響光学素 子により F=1 から F'=2 への遷移へ周波数をシフ トさせる。図3に飽和吸収分光により取得した 吸収線とエラー信号の図を示す。取得した吸収 線は図 2 のルビジウムの超微細構造を反映して いる。エラー信号は吸収信号を近似的に微分し た結果とみなせ、これを用いて DBR レーザーの 電流にフィードバックをかけ、その周波数をロ ックする。レーザー周波数の安定性は、波長計 により検出される波長(nm)の小数点以下3桁 を出力とする電圧値と、上記のフィードバック をかけた吸収ピークの電圧値をリアルタイムで モニターすることによって評価した。本講演で は、これらの実験の詳細および今後の展望につ いて報告する。

#### 【参考文献】

- [1] N. Takei et al. Nat. Commun. 7, 13449 (2016).
- [2] C. Sommer et al. Phys. Rev. A 94, 053607 (2016).
- [3] K. Ohmori. Found. Phys. 44, 813 (2014).
- [4] H. Katsuki et al. Acc. Chem. Res. 51, 1174 (2018).







**Fig. 3** Absorption line by saturated absorption spectroscopy and the error signal.