First-Principle Study of Pt₅₅ and Core-Shell Ru₁₃@Pt₄₂ Catalysts for Oxygen Reduction Reaction

 Jing Lu¹, Kazuya Ishimura², and Shigeyoshi Sakaki^{*1}
¹Fukui Institute for Fundamental Chemistry (FIFC), Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyou-ku, Kyoto 606-8103, Japan
²Institute for Molecular Science (IMS), Okazaki 444-8585, Japan

[Abstract] First-principle calculations were performed to investigate the preferential site on the Pt₄₂ surface of icosahedron-like Ru₁₃@Pt₄₂ and Pt₅₅ for interaction with O₂, OOH, O, and OH. Ru₁₃@Pt₄₂ has weaker binding ability for O₂ than Pt₅₅. The O-OH bond cleavage of OOH-containing species occurs with small barrier for Pt₅₅ and Ru₁₃@Pt₄₂. Both of OH(OH^{Pt}) and OHH^{Pt} formation reactions participate in rate-determining process in Ru₁₃@Pt₄₂ catalyst. On the other hand, OH(OHH^{Pt}) formation reaction is rate-determining step (RDS) in Pt₅₅ catalyst. The barrier of RDS in the case of Ru₁₃@Pt₄₂ is smaller than that of Pt₅₅, suggesting that Ru₁₃@Pt₄₂ could serve as a promising ORR heterogeneous catalyst like Pt₅₅.

[Introduction] Pt-based clusters/particles are one of efficient catalysts for oxygen reduction reaction (ORR) at the cathode in proton exchange membrane fuel cells (PEMFCs) because of their incomparable catalytic activity. However, the limited resource and high cost of Pt, as well as the slow reaction of ORR, have remained as the major hurdles for commercialization of PEMFCs. Pt alloys with core-shell structure (M@Pt) have been shown great promise as next generation ORR catalysts due to their superior catalytic performance and lower cost than pure Pt. M@Pt catalyst can significantly improve the Pt utilization by depositing a thin Pt shell outside the M core. The structural and electronic effects of M element in the core play crucial roles in weakening the ability to bind with oxygen species. In general, an ideal catalyst should exhibit a moderate interaction between Pt surface and oxygen species. O₂ activation

and electron transfer will be hampered if the ability to bind with oxygen-containing adsorbates is too weak. Conversely, if such binding ability is too strong, the subsequent H_2O formation will be sluggish.

Previously, the stability of icosahedron-like $Pt_{42}Ru_{13}$ cluster were investigated in our group. The core-shell structure ($Ru_{13}@Pt_{42}$) is much more stable than these non-core-shell structures ($PtRu_{12}@Pt_{41}Ru^{edge}$ and $PtRu_{12}@Pt_{41}Ru^{vert.}$). However, further theoretical insights into the catalytic performance of $Ru_{13}@Pt_{42}$ and Pts_{55} catalysts toward ORR is limited and highly desirable. Our purposes are to elucidate the ORR mechanism and rate-determining step (RDS) in $Ru_{13}@Pt_{42}$ and Pts_{55} catalysts.

[Methods] All the spin-polarized calculations were performed with the Vienna Ab initio Simulation Package (VASP). The PBE-D3 method was adopted for geometry optimization

Scheme 1. (a) Binding sites on the surface of icosahedron-like Pt₄₂. (b) Schematic illustration of reaction pathways for ORR.

with an energy cutoff of 400 eV. The cluster was placed in a sufficiently large supercell (25 Å \times 25 Å \times 25 Å) to ensure enough separation by vacuum. The thresholds for energy and force were set at 0.0001 eV and 0.01 eV/Å, respectively. The reaction energy barrier was calculated using Nudged Elastic Band (NEB) method with VASP Transition State Tools (VTST). To estimate the solvent effect, an implicit solvation model, which describes the effect of electrostatic interaction between solute and, was used in VASP.

[Results and Discussion] The adsorption sites on the Pt₄₂ surface of icosahedron-like 55-atom clusters are shown in Scheme 1a. The preferential sites for O₂, OOH, and O-binding on the Pt₄₂ surface of Ru₁₃@Pt₄₂ and Pt₅₅ are b1, t2, and h1, respectively. For OH-binding, the b1 and t2 sites are preferable in Pt₅₅, while only t2 is the most favorable in Ru₁₃@Pt₄₂. Ru₁₃@Pt₄₂ has a weaker ability than Pt₅₅ to bind with O₂, OH, and so on. It can be reasonably explained via lower energy shift of *d*-band center for Ru₁₃@Pt₄₂ due to compressive strain effect of Pt₄₂ surface and charge transfer from Pt₄₂ shell to Ru₁₃ core. The calculated *d*-band center for Ru₁₃@Pt₄₂ is -2.18 eV, which is lower than that for Pt₅₅ (-2.02 eV).

The full catalytic cycle of ORR is descripted in Scheme 1b. For both catalysts, the O-OH bond cleavage occurs with small barrier. For $Ru_{13}@Pt_{42}$, the $OH(OH^{Pt})$, $OH(OHH^{Pt})$, and OHH^{Pt} formations need barriers of 0.86 eV, 0.76 eV, and 0.89 eV, respectively. For Pt₅₅, the $OH(OH^{Pt})$, $OH(OHH^{Pt})$, and OHH^{Pt} formations need barriers of 0.57 eV, 1.10 eV, and 0.91 eV, respectively. Thus, $OH(OH^{Pt})$ and OHH^{Pt} formation reactions participate in rate-determining process in $Ru_{13}@Pt_{42}$ catalyst. $OH(OHH^{Pt})$ formation reaction is the RDS in Pt_{55} catalyst. The barrier of RDS in the case of $Ru_{13}@Pt_{42}$ is smaller than that of Pt_{55}.

Note that the direct H addition to O of oxygen containing species is also possible and much easier than H addition to Pt shell. The full catalytic cycle can be easily described without H^{Pt} containing species **3**, **6**, **8**, **11** (Scheme 1b). Our results verify that $Ru_{13}@Pt_{42}$ could serve as a less expensive ORR catalyst with desirable performance and a similar ORR mechanism to Pt₅₅ catalyst.

Fig. 1. Potential energy surfaces in the cases of Ru₁₃@Pt₄₂ in solution.

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

[References]

- [1] M. E. Scofield et al. Chem. Soc. Rev. 44, 5836 (2015).
- [2] J. Lu et al. J. Phys. Chem. C 122, 9081 (2018).