高次高調波分光による超高速光異性化反応の解明

北大院工 〇二ノ田有輝,金島圭佑,関川太郎

Ultrafast Photo-Isomerization Probed via High Harmonic Spectroscopy

○Yuki Ninota, Keisuke Kaneshima, Taro Sekikawa Division of Applied Physics, Hokkaido University, Japan

[Abstract] We report, to the best of our knowledge, the first time-resolved high-harmonic spectroscopy (TR-HHS) study of a chemical bond rearrangement. We investigate the transient change of the high-harmonic signal from 1,3-cyclohexadiene (CHD), which undergoes ring-opening and isomerizes to 1,3,5-hexatriene (HT) upon photoexcitation. By associating the variation in the harmonic yield to the changes in the molecular vibrational modes due to isomerization, we find that the electronic excited state of CHD created via two-photon absorption of 3.1 eV photons relaxes almost completely within 100 fs to the electronic ground state of CHD with vibrational excitation. Subsequently, the molecule isomerizes to HT, i.e., ring-opening occurs, around 400 fs after the excitation. The present results demonstrate that TR-HHS is a powerful tool for studying ultrafast photochemical reactions.

【序】 高次高調波発生 (HHG) は、高強度レーザーパルスと物質との非摂動論的な 相互作用により、入射光の奇数倍の周波数を持つ光が発生する非線形光学現象である. HHG の発生機構は、強いレーザー電場による原子・分子のトンネルイオン化と、親 イオンとの再結合によって説明される.これらの過程は、原子・分子の電子状態に敏 感であるため、HHG を通じてその発生源である原子・分子の状態を探ることができ る. このような手法は高次高調波分光 (HHS) と呼ばれている[1]. また,高調波の収 率は分子振動にも敏感であることが知られている[2]. このように、HHS では、分子 の電子状態・振動状態の双方を同時に観測できる可能性があるため、超高速化学反応 を明らかにするための有用な手法にとして期待できる.しかし、従来の HHS の適用 は、 臭素の光解離反応や四酸化二窒素の分子振動ダイナミクスの解明といった、 常温 で気相にある小分子に限定された[3,4]. つまり HHS は、より複雑な構造を持つ分子 及びその光化学反応に対して未だ有用な適用はされていない.これは,有機分子のよ うな常温で液相にある分子の蒸気圧が低いので、高次高調波を発生させるための十分 な試料密度が得られないためである. そこで我々は、上記の HHS の現状を打破すべ く、常温で液相の有機分子であるため高調波測定が難しい 1,3-cyclohexadiene (CHD) の光異性化反応の時間分解 HHS (TR-HHS) による測定を行った. CHD は、光照射に よって開環反応を起こし、1,3,5-hexatriene (HT) へと異性化することが知られている (Fig 1, inset) [5,6]. 本実験では, 3.1 eV の光子による CHD の 2 光子励起を用いて測定 を行った.本講演では、その結果について報告する.

【実験】 TR-HHS 測定に用いた実験系を Figure 1 に示す. 試料である CHD は He を キャリアガスとするバブリングにより,気化した状態で内径 100 µm のガスジェット から導入した. この際, He からの HHG は観測されないことを確認した. 励起光源と してチタンサファイアレーザーの二倍波 (3.1 eV, 10 µJ) を使用し,遅延を付けた基本 波 (1.55 eV, 730 µJ, 30 fs) によって高次高調波を発生させることで,高調波収率の時 間変化を測定した.

Fig. 1. Experimental setup and photo-induced ring opening of 1,3-cyclohexadiene (CHD) (inset).

【結果・考察】 Figure 2 に測定し た CHD の HHG スペクトルを示す. Figure 3 は, 19 次高調波収率 (H19) の時間変化を示しており、赤の実線 は,各時間領域で平均した高調波収 率である. 高調波収率の平均の変化 は、異性化による分子の電子状態の 変化を示唆している. そこで我々は, 励起後に見られる高調波信号の変調 周波数と, CHD 及びその異性体の分 子振動モードとを関連付けることに より, CHD の光異性化ダイナミクス の解明を試みた.その結果, CHDの 電子励起状態はまず CHD の基底状 態へと緩和した後,励起後 400 fs 程 度経過してから, cZc-HT に異性化す ることが明らかとなった (Fig. 3). さ らに、励起後1000 fs 程度経過すると、 反応が進み cZt-HT に異性化するこ とも明らかとなった.本実験で得ら れた時間スケールは, 我々のグルー プによる時間分解光電子分光を用い た先行研究の結果[7]と良く一致し ている.

Fig. 2. High harmonic spectrum of CHD.

Fig. 3. Time-dependent yield of the 19th harmonic.

【参考文献】

- [1] J. Itatani et al., Nature 432, 867 (2004).
- [2] N. L. Wagner et al., PNAS 103, 13279 (2006)
- [3] H.J.Wörner et al., Nature 466, 604 (2010).
- [4] W, Li. et al. Science 322, 1207 (2008).
- [5] S. Deb et al., Annu. Rev. Phys. Chem. 62, 19 (2011).
- [6] B. C. Arruda et al., Phys. Chem. Chem. Phys. 16, 4439(2014).
- [7] R. Iikubo et al., Farad. Discuss. 194, 147 (2016).