1P048

固体/液体界面における支持脂質二分子膜のHD-VSFG分光

筑波大院・数理物質 ○鍛治美里,奥野将成,石橋孝章

HD-VSFG spectroscopy of supported lipid bilayers at solid/liquid interface

OMisato Kaji, Masanari Okuno, Taka-aki Ishibashi Graduate School of Pure and Applied Sciences, University of Tsukuba

[Abstract] Supported lipid bilayers have been used as a model to mimic cell membranes. However, spectroscopies to measure such "buried" interfaces are limited. In recent years, it has been applied heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy to buried interfaces. The spectroscopy can selectively probe surfaces or interfaces with high sensitivity, and enables us to investigate orientational changes of interfacial molecules. In this study, we used Langmuir-Blodgett/Langmuir-Schaefer techniques to deposit the proximal and the distal leaflets of a single lipid bilayer on a CaF₂ planar parallel substrate. We evaluated molecular orientations and the signal decay of the supported bilayers by HD-VSFG spectroscopy. The orientations of terminal methyl groups in DPPG/ d_{70} -DSPC bilayers determined by HD-VSFG were consistent with the model. However, the flip-flop rate constant estimated by the decay of the SFG intensity of the methyl symmetric stretching vibrational mode for a DSPC/ d_{70} -DSPC bilayer was faster than previous studies. This suggests that the bilayers had some defects, that is, lipids had not only all-*trans* conformation but also *gauche* conformation.

【序】固体基板/水界面に作製した脂質二分子膜は、生体膜の構造を理解するための モデルとして多くの研究で用いられている。しかし、このような2つのバルクに挟ま れた「埋もれた」界面を測定できる分光法は限られている。近年、界面選択的かつ高 感度な振動分光法であるヘテロダイン検出振動和周波発生(heterodyne-detected vibrational sum frequency generation: HD-VSFG)分光法の「埋もれた」界面への応用が はじまっている^[1,2]。HD-VSFG 分光法で得られる二次非線形感受率($\chi^{(2)}$)の符号は 分子の絶対配向を反映する。HD-VSFG 分光法で脂質二分子膜が測定できるようにな れば、二分子膜が生理活性を持った生体分子と相互作用した際の両者の構造変化の解 明などに繋がると期待される。本研究では、CaF2平行平面基板上に非対称的な脂質二 分子膜を作製した。HD-VSFG 分光法を用いてバンドの符号から脂質の絶対配向を、 バンド強度の減衰速度から脂質二分子膜のコンフォメーションを評価した。

Figure 1. SFG experimental geometry and molecular formulas. (a) Reflection geometry employed for a bilayer immersed in water. A silver film is used as a reference to normalize the SFG signals. (b) We prepared asymmetric bilayers for SFG experiments, using DPPG and DSPC as hydrogenated lipids, and d_{70} -DSPC as a deuterated lipid.

【実験】脂質二分子膜を作製するために Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) 法を用いた。CaF₂ 平行平面基板上に 1,2-dipalmitoyl-*sn*-glycero-3-phosphoglycerol (DPPG)、または 1,2-distearoyl-*sn*-glycero-3-phosphocholine (DSPC) の LB 単分子膜 (表 面圧 30 mN/m)を作製した。続いて、面積一定の測定用セルに第二層として積層する 1,2-distearoyl-D70-*sn*-glycero-3-phosphocholine (d_{70} -DSPC) の L 膜を作製した。膜の密 度は d_{70} -DSPC のクロロホルム溶液の滴下量で調整した。溶媒を揮発させた後、基板 をセルに設置した。基板と下層液が接触した時間をt = 0とした。偏光配置を SSP (SFG 光:S 偏光、可視光:S 偏光、赤外光:P 偏光)として、CD 伸縮振動領域と CH 伸縮 振動領域における二次非線形感受率 ($\chi^{(2)}$) スペクトルを測定した。得られたスペク トルは、基板の底面に蒸着した銀のスペクトルを参照試料として用いて振幅と位相を 規格化した。

【結果・考察】DPPG/ d_{70} -DSPC 二分子膜の CD 伸縮振動領域と CH 伸縮振動領域にお ける $\chi^{(2)}$ スペクトルを図 2a,b に示す。いずれの領域においても脂質の末端メチル基の 対称伸縮振動 (ν_s) に由来するバンドが強く観測された。それらのバンドの符号はメ チル基を水層側に、重水素化されたメチル基を空気側に向けて配向する分子が多いこ とをそれぞれ示唆しており、想定される脂質の配向と一致した。次に、DSPC/ d_{70} -DSPC 二分子膜について CH₃ ν_s のバンド強度の時間変化を測定した。バンド強度は各層の 分子数の差に比例するため、フリップフロップの進行とともに減衰する。各層のフリ ップフロップの速度が等しいと仮定すると、各時間のバンド強度は以下の式に従う。

 $I_{CH_3}(t) = I_{max}e^{-2kt} + I_{min}$ (1) 本研究で求めた DSPC/ d_{70} -DSPC 二分子膜のフリップフロップの速度定数 $k = 1.3 \times 10^{-4} \text{ s}^{-1}$ は、先行研究の値 $k = 7.3 \times 10^{-6} \text{ s}^{-1}$ ^[3]に比べて大きかった。この違いの原因 は、我々の脂質二分子膜の不完全性に起因すると考えている。DSPC の疎水性アルキ ル鎖は表面圧 30 mN/m では全トランス型で秩序性の高い構造をとる。しかし、ゴーシ ュ型が増えて秩序性が低くなると膜の流動性が向上する。本研究では、膜作製時に脂 質のゴーシュ欠陥が引き起こされたため、膜の流動性が向上してフリップフロップの 速度が加速されたと考えられる。今後、良質な脂質二分子膜の作製方法を検討すると ともに、脂質二分子膜に生体分子を添加したときの両者の分子レベルでの構造変化の 解明を目指す。

Figure 2. SFG spectra of the DPPG/ d_{70} -DSPC bilayer in the frequency regions of (a) 2000-2300 cm⁻¹ and (b) 2750-3050 cm⁻¹. The CD₃ and CH₃ symmetric stretching (ν_s) modes are strongly observed in each region. (c) Time-dependence of the amplitude of the proximal CH₃ ν_s mode from the DSPC/ d_{70} -DSPC bilayer. The red line is the fitting result using equation 1.

[1] N. Myalitsin, S. Urashima, S. Nihonyanagi, S. Yamaguchi, T. Tahara, J. Phys. Chem. C, 2016, 120, 9357.

[2] N. Takeshita, M. Okuno, T. Ishibashi, J. Phys. Chem C, 2017, 121, 25206.

[3] Wu F., Yang P., Zhang C., Han X., Song M., Chen Z., J. Phys. Chem. C 2014, 118, 17538.