4P041

一つの相補的な水素結合で繋がれた 混合原子価 Re(III)Re(IV) 錯体の固体 PCET 挙動 東理大理, ○ 原田翔平,松野 匠,磯谷和巨,山根健史,亀渕 萌,田所 誠

Solid–State PCET Behaviors of Mixed-Valence Re(III)Re(IV) Complex Connected with One Complementary Hydrogen Bond

O Shohei Harada, Takumi Matsuno, Kazuo Isogai, Takeshi Yamane, Hajime Kamebuchi, Makoto Tadokoro

Department of Chemistry, Faculty of Science, Tokyo University of Science

[Abstract]

Proton coupled electron transfer (PCET) plays an important part of biological reactions in proteins. In the previous study, we have succeeded in synthesizing a dimer complex with a Re^{III}/Re^{IV} mixed valence state linked by NH···N type hydrogen bonding of 2,2'-biimidazolate monoanion (Hbim⁻), [$Re^{III}Cl_2(P^nPr_3)_2(Hbim)$][$Re^{IV}Cl_2(P^nPr_3)_2(bim)$] (<u>1</u>). The temperature dependence of ESR spectra for <u>1</u> suggested intervalence charge transfer.From the analysis of single crystal neutron diffraction, the proton on the NH...N hydrogen bonding is considered to fluctuate along a wide single-minimum-like potential curve. These showed the existence of moving electron and proton on the hydrogen bonding, and hence <u>1</u> exhibits PCET phenomenon.In order to investigate the PCET behavior of <u>1</u> from a kinetic aspect, we replaced proton on the hydrogen bonding with deuteron, and compared the results of isotope shift in IR spectrum and single crystal X-ray structure analysis.

【序論】

電子とプロトンが同時に移動す るプロトン-電子連動(PCET)系 は生体内タンパク中でよく見ら れる反応機構である。先の研究 で、1つの NH...N 型水素結合で 連結された Re^{III}/Re^{IV} 混合原子 価 状 態 を も つ ダ イ マ ー 錯 体

[Re^{III}Cl₂(PⁿPr₃)₂(Hbim)][Re^{IV}Cl₂(PⁿPr₃)₂(bim)] (<u>1</u>) (Hbim⁻ = 2,2'-biimidazolate monoanion) の合成に成功した。 ESR スペクトルから、この錯体 <u>1</u> は水素結合したプロトン移 動に伴って Re^{III}-Re^{IV} 間の電子移動を同時に起こすと考えられている。また、中性子 結晶構造解析と X 線結晶構造解析の差 Fourier マップの結果から、水素結合した N...N 間の proton は移動障壁のほとんどない広幅なシングルミニマムのポテンシャ ルを描くように揺動していた。これは移動している電子と proton の存在確率を示して おり、明らかに PCET 現象によって移動している証拠になっている。そこで、 N-H...N 型の水素結合の proton を deuteron (D⁺)へと重水素化することで、同位体効 果によってプロトン移動の挙動に変化がないかどうか、赤外吸収分光と X 線結晶構造

【方法 (実験・理論)】

重水素化された [Re^{III}Cl₂(PⁿPr₃)₂(Dbim)][Re^{IV}Cl₂(PⁿPr₃)₂(bim)] (2) の合成は、グローブボ ックス内でモノマー錯体を重水素化することで行った。始めに原料である [Re^{III}Cl₂(PⁿPr₃)₂(H₂bim)]Cl を MeOD に溶解させ、乾固させた。この操作を3回繰り 返すことで重水素化された [Re^{III}Cl₂(PⁿPr₃)₂(D₂bim)]Cl を得た。さらにこの錯体を MeOD に溶解させ、ND3 を拡散させることで [Re^{III}Cl₂(P'Pr₃)₂(Dbim)]₂ を得た。最後に、 [Re^{III}Cl₂(PⁿPr₃)₂(Dbim)]₂ と [Re^{IV}Cl₂(PⁿPr₃)₂(bim)] を MeOD に溶解させ、この溶液に ND3 を拡散させると深紫色の単結晶として得られた。

【結果・考察】

合成した [Re^{III}Cl₂(P"Pr₃)₂(D₂bim)]Cl につい て¹H-NMR を測定し、目的の NH 部位の ピーク強度が減少したことから重水素化を 確認し、その積分値から重水素化率を 90.5% と算出した(Fig.1)。さらに 2 の赤外 分光測定では 1 の測定時に見られた NH の伸縮振動が 2495 cm⁻¹ から 2038 cm⁻¹ ま で大きくシフトしていることがわかった。 これは proton を deuteron に置換したこと

で質量が約2倍となり、同位体効果 Fig.1 ¹H–NMR spectra of [ReCl₂(PⁿPr₃)₂(D₂bim)]Cl complex を示したものだと考えられる。

重水素化前

1 回目

2 回目

3 回目

1.9

1.7

1.5

また、単結晶 X 線構造解析で錯体 2 の 結晶構造を明らかにした。その結晶学的 なデータは triclinic, P-1(#2), Mw =1420.44, a = 9.6913(1) Å, b = 10.206(2) Å, c =16.854(2) Å, $\alpha = 74.837(2)^{\circ}$, $\beta = 86.568(1)^{\circ}$, $\gamma = 75.307(2)^{\circ}, V = 1556.3(3) \text{ Å}^3, Z = 2, T =$ 298 K, $R_1 = 2.98\%$, $wR_2 = 6.98\%$, GOF =1.028 であった。この錯体 2 も錯体 1 と 同様に、 Re^{III} と Re^{IV}の錯体部位が 1 つの ND…N 型水素結合で連結されてい た。 X 線結晶構造解析では、水素結合し

た deuteron がダブルミニマムのポテンシャ ルとして観測された(Fig.2)。 これは、水素結

0.7 (/ppm)

Fig.2 Differencial Fourier Maps of 2

合した deuteron が proton より重たいため、移動障壁を感じているものと考えられる。 当日は、錯体1と錯体2について赤外吸収分光や差 Fourier マップの結果から、そ の違いを述べていく。

【参考文献】

[1] M. Tadokoro et al., Angew. Chem. Int. Ed., 46, 5938 (2007)

ニッケルジチオレン錯体を用いた縮退系中性ラジカル状態の探索

¹京大院理,²長崎大院教育 〇木村要二郎¹,林幹大^{1,2},吉田幸大¹,北川宏¹

Exploration of Degenerated Neutral Radical State Based on a Nickel Dithiolene Complex

○Yojiro Kimura¹, Mikihiro Hayashi^{1,2}, Yukihiro Yoshida¹, Hiroshi Kitagawa¹
¹ Division of Chemistry, Graduate School of Science, Kyoto University, Japan
² Graduate School of Education, Nagasaki University, Japan

(Abstract) π -Conjugated molecular materials with hydrogen-bonded lattice have attracted much interest because they have a potential to exhibit unique physical properties derived from proton-coupled electron transfer in solids. Among such materials, quinhydrone complex composed of hydroquinone as a proton-electron donor and 1,4-benzoquinone as a proton-electron acceptor has a potential proton-electron transfer (PET) phase under high pressure, consisting of degenerated neutral radical molecules. In the PET phase, electrical conductivity, magnetism, and dielectricity are expected to coexist. However, there are few materials that have the PET phase under ambient condition due to the instability of the state. In this study, we have focused on nickel dithiolene complexes, because of their multi-redox properties as well as their ligand-based protonation/deprotonation properties, both of which could have a favorable effect on the emergence of the PET state. Theoretical and experimental investigations revealed the stabilization of the state by an introduction of cyano groups to the nickel dithiolene complex. In this work, we discuss chemical and physical properties of a proton-electron donor molecule and its PET state.

【序】π 共役分子から成る水素結合結晶は, プロトン移動のみならずプロトン共役電 子移動に起因する特異な電子構造を有し, 新奇な物性を示すため注目されている[1]。 そのような物質群の中で、プロトン・電 子ドナーであるヒドロキノンとプロト ン・電子アクセプターである 1.4-ベンゾキ ノンから成るキンヒドロン錯体は, 高圧 下でのドナー分子からアクセプター分子 へのプロトン・電子移動 (PET) により, 縮退系中性ラジカル分子から成る PET 状 態に相転移することが知られている (Fig. 1) [2]。このような PET 状態では, 分子 の π 積層と電荷移動によって生じるキャ リアに起因する伝導性・磁性や、プロト ン移動による誘電性等の複合物性が期待 される。しかしながら,縮退系中性ラジ カル状態の不安定性のため、常温・常圧 下で PET 状態を示す物質の報告例はなく, その電子物性は明らかでない。

Fig. 2. PET Scheme in a Dithiolene Complex.

本研究では、ニッケルジチオレン錯体の縮退系中性ラジカル状態に着目した(Fig. 2)。ジチオレン錯体は安定な酸化還元特性を有する上に、配位子設計によってプロトン授受能を付与することが可能なため、PET状態における縮退系中性ラジカル分子を安定化させることが期待される。我々は、先行研究のpyrazinedithiolato 錯体において得られた知見[3]を基に、シアノ基を導入した dicyanopyrazinedithiolato 錯体 Ni^{III}(HL)(L) (L = 5,6-dicyanopyrazinedithiolate; Fig. 3)を用いた縮退系中性ラジカル状態の探索を行った。現在までに、プロトン・電子ドナー分子 Ni^{II}(HL)₂ と縮退系中性ラジカル分子 Ni^{III}(HL)(L)の合成に成功している。本発表では、主に縮退系中性ラジカル分子の溶液中での安定性とその固体物性について報告する。

【方法 (実験・理論)】B3LYP/6-31+G(d, p)を用いた DFT 計算により, pyrazinedithiolato 錯体へのシアノ基導入による縮退系中性ラジカル状態の安定化効果を評価した。

Dicyanopyrazinedithiolato 錯体 $[Ni^{II}(L)_2]^2$ の TBA 塩(TBA)₂ $[Ni^{II}(L)_2]$ [4]に,塩酸を用い てプロトンを付加し、プロトン・電子ドナー分子 Ni^{II}(HL)₂を得た。さらに、得られた 粗結晶をエタノールに溶解させ、ジエチルエーテルを蒸気拡散させることで単結晶を 得た。単結晶 X 線構造解析を行い、組成ならびに結晶構造を明らかにした。また、 (TBA)₂ $[Ni^{II}(L)_2]$ を電気化学的に酸化することで Ni^{III}(HL)(L)を得、元素分析及び分光測 定により同定を行った。さらに、(TBA)₂ $[Ni^{II}(L)_2]$ を用いて電位-pH 図(プールベダイ アグラム)を作成し、Ni^{III}(HL)(L)の溶液中での安定性を評価した。

【結果・考察】DFT 計算から, pyrazinedithiolato 錯体へのシアノ基の導入により, 縮 退系中性ラジカル分子が著しく安定化することがわかった(Fig. 3)。

単結晶 X 線構造解析から,結晶中で Ni^{II}(HL)₂と溶媒分子(Et₂O)は N-H…O 水素 結合による一次元ラダー構造を構築し,Ni^{II}(HL)₂分子同士は π 積層による一次元カラ ムを構築していることを明らかにした。また,サイクリックボルタンメトリー測定で は2つの酸化波が観測され(アセトン溶液中で, $E^{0/+1} = 0.19$ V, $E^{+1/+2} = 1.01$ V vs. Fc/Fc⁺), 電子ドナー性を有することを確認した。

(TBA)₂[Ni^{II}(L)₂]を用いたプールベダイアグラムから,DFT 計算で示唆されたように シアノ基の導入により縮退系中性ラジカル状態 Ni^{III}(HL)(L)が著しく安定化されるこ とを明らかにした。電解酸化によって得られた Ni^{III}(HL)(L)の多結晶固体は,1.9-300 K の範囲で Curie-Weiss 則に従う常磁性体であることが分かった。

Fig. 3. Theoretical Prediction of the Stabilization of the Radical Species.

【参考文献】

- [1] 三谷洋興,北川宏,中筋一弘:高圧力の科学と技術 10,42 (2000).
- [2] T. Mitani et al. Phys. Rev. Lett. 60, 2299 (1988).
- [3] T. Kubo et al. Inorg. Chem. 43, 7301 (2004).
- [4] M. Tomura et al. Synth. Met. 24, 197 (1994).

(TMTTF)₃[TTF(CO₂)₄H₂]の硫酸中における電気抵抗変化, および結晶成長条件の検討

¹京大環安保,²京大院理,³分子研 〇石川学¹,上中敬太²,村上賢太朗²,中野義明^{1,2},賣市幹大³, 大塚晃弘^{1,2},矢持秀起^{1,2}

Electrical resistivity of (TMTTF)₃[TTF(CO₂)₄H₂] in sulfuric acid and the consideration of the crystal growth condition

oManabu Ishikawa¹, Keita Uenaka², Kentaro Murakami², Yoshiaki Nakano², Mikio Uruichi³,

Akihiro Otsuka², and Hideki Yamochi²

¹ Agency of Health, Safety and Environment, Kyoto University, Japan ² Department of Chemistry, Graduate School of Science, Kyoto University, Japan ³ Institute for Molecular Science, Japan

[Abstract] To examine the sensitivity of the charge ordered wholly tetrathiafulvalene (TTF) radical salt, $(TMTTF)_3[TTF(CO_2)_4H_2]$ (1) to the external stimuli, the electrical resistivity measurement of 1 was carried out under the acidic condition. The decrease of the resistivity by three orders of magnitude in 3 seconds was reproduced in the H₂SO₄ aq. (10⁻¹ mol/L). The surface color change during the measurement was attributed to the electrodecarboxylation of the [TTF(CO_2)_4H_2] which was detected by the decay of the Raman bands assigned to [TTF(CO_2)_4H_2] and the growth of those corresponding to TTF. The crystal growth under the acidic condition was also examined and a new polymorph of (TMTTF)₂[TTF(CO₂)₄H₂] was obtained. In the new polymorph, inter-columnar relationship was turned from herring-bone into parallel one. Based on the structural comparison with two polymorphs of neutral TMTTF, it was concluded that the observed polymorphism was dominated by the TMTTF molecule.

【序】電荷秩序状態にある TTF 誘導体の 陽イオンラジカル塩は,外部刺激に応答し た相転移を示す可能性があり,基礎および 応用の観点から注目されている.[1]本研 究では, Fig 1 にある分子を用い, 300 K において電荷秩序状態にある全 TTF 型ラ

Fig. 1. The molecular structures of the donors in 1.

ジカル塩の1つ,(TMTTF)₃[TTF(CO₂)₄H₂](1)のもつ外部刺激応答性について着目している.^[2]1の結晶中では,TMTTFの3量体と[TTF(CO₂)₄H₂]が交互に積層したカラム構造を形成しており,TMTTFの3量体内で+10+1の様な電荷不均化が生じている. この秩序化を乱すことで高伝導状態を誘起する試みとして,対成分である [TTF(CO₂)₄H₂]のプロトン数制御が有効であると期待された.そこで今回,試料を硫酸 水溶液中に浸して電気抵抗測定を行った.その結果,硫酸水溶液中に浸している最中 にのみ抵抗が減少し,試料表面の変色する様な変化を観測した.試料の変色が低抵抗 化のメカニズムと関連していると考え,抵抗測定中のラマンスペクトルを追跡したの でその結果について報告する.また,低抵抗状態が維持された試料の成長を期待し, 硫酸存在下での結晶成長を検討した結果,3:1塩ではなく以前報告した2:1塩とは 分子配列の異なる多形が得られたのでその構造についても報告する.

【方法 (実験・理論)】硫酸水溶液(10⁻⁴~10⁻¹ mol/L)中における 1 の室温電気抵抗率測

定は定電圧直流 2 端子法によって行い,印加 電圧 1.0 Vにおける電流値から電気抵抗率を 計算した.硫酸への浸漬前後のラマンスペク トルの測定には,10⁻¹ mol/L に調製した硫酸 を用いた.硫酸への浸漬前および浸漬後,さ らに電流を印加しながら 30 秒おきに積算時 間 30 秒のラマンスペクトルを測定した.酸 性条件下での結晶化として,TMTTF および [(n-C₄H₉)₄N]₂[TTF(CO₂)₄H₂]のアセトニトリル 溶液に対して 10⁻¹ mol/L の硫酸を数滴滴下し, 1.0 μ A の電流を 7 日間,室温で印加したとこ ろ,陽極上には 1 の黒色柱状結晶とは異なる 紫色長板状晶が析出した.X線結晶構造解析 の結果,この結晶は(TMTTF)₂[TTF(CO₂)₄H₂] であることが明らかとなった.

【結果・考察】電気抵抗測定の結果を Fig. 2a に示す.空気中での室温比抵抗は 10⁴ Ω cm で あるが,電圧を印加しながら試料を硫酸中に 浸漬すると,3 秒程度の間で3 桁程度の抵抗 減少が観測された.ここで,抵抗値は時間の 経過に対して極小を持ち,30 秒以上の時間経 過で緩やかな増大に転じる傾向があること も明らかとなった.数時間の通電後この試料 を硫酸から引き上げ,試料表面を蒸留水で洗 浄すると,試料の電気抵抗率は硫酸への浸漬 前とほぼ同じ値であったが,試料断面の観察 から深さ 10 µm 程度までの色が黒色からピン ク色へと変化していることが確認された.変

Raman spectrum during resistivity measurement in H_2SO_4 aq.

色の過程をラマンスペクトルにおける[TTF(CO₂)₄H₂]の C=C 伸縮バンドで追跡した所 (Fig 2b), 硫酸に対する浸漬だけではラマンシフト位置に変化は見られなかった.一方 電圧を印加した場合には[TTF(CO₂)₄H₂]のバンドの強度は徐々に減少し, やがて中性の TTF とみられるバンドが成長した.このことから, 電圧の印加によって[TTF(CO₂)₄H₂] が電解脱炭酸し,中性の TTF が生成したものと考えた.従って, 硫酸中での通電中に のみ現れる低抵抗状態は, 1 と硫酸との界面における電解脱炭酸反応と関連している と考えられる.試料の深さ方向に反応が進行可能であったことから, 脱炭酸反応後の 表面には硫酸イオンが通過可能な程度の隙間が生じていると推察される.

また,硫酸存在下での電解結晶成長では,低抵抗状態の1を得ることはできなかったが,TMTTFと[TTF(CO₂)₄H₂]の2:1塩,(TMTTF)₂[TTF(CO₂)₄H₂]が得られた.この 塩は以前得られたヘリングボーン構造を持つ塩とは分子配列構造の異なる多形であり,全てのドナー長軸方向が揃った分子配列が確認された.さらに,TMTTF同士の 積層様式も異なっており,以前の塩ではring-over-ring型であったものがring-over-bond 型に変化していた.中性のTMTTFの結晶構造として,全てのドナー長軸がそろった ものが報告されているが,最近ドナーカラム同士がヘリングボーン構造をもつ結晶を 得ており,(TMTTF)₂[TTF(CO₂)₄H₂]の多形の生成はTMTTFの配列特性を反映したもの であると考えている.各結晶の構造の詳細は当日報告する予定である.

【参考文献】

[1] K. Onda, H. Yamochi, S. Koshihara, Acc. Chem. Res., 47(12), 3494-3503 (2014)

[2] 村上賢太郎ら, 第11回分子科学討論会仙台, 3C02 (2017).

コバルトが組み込まれた 異種金属一次元鎖錯体の構造と磁気特性

¹岐阜大院自然科技,²岐阜大工 〇三宅里果¹,海老原昌弘²,植村一広²

Magnetic Properties of Cobalt Ions Through Pt–Rh–Rh–Pt Heterometallic Bonds In One–dimensional Chains

Rika Miyake¹, Masahiro Ebihara², Kazuhiro Uemura²
¹ Graduate School of Natural Science, Gifu University, Japan
² Faculty of Engineering, Gifu Univirsity, Japan

[Abstract] A heterometallic one-dimensional chains, where several kinds of metal are regularly aligned, are expected as new material for novel magnetic properties, because combination of metals is various. Previously, we have succeeded in obtaining heterometallic one-dimensional chain, where trinuclear complex $[Pt_2Cu(NH_3)_4(piam)_4](PF_6)_2$ (piam = pivalamidate) and $[Rh_2(O_2CCH_3)_4]$ are aligned with metal-metal bond. In this study, we will report a novel one-dimensional chains aligned as -Rh-Rh-Pt-Co-Pt-, discussing metal oxidation and spin states based on ESR, XPS, and magnetic susceptibility measurements.

【序】複数種の金属が規則的に並んだ異種金属一次元鎖錯体は,金属と配位子に加え, 金属と金属の組み合わせが多様であり,電子構造の制御や新しい磁気的特性を創出で きる物質として期待される.当研究室では, z軸方向での HOMO-LUMO 相互作用を 利用した新しい一次鎖錯体の合成法を提案している^[1].白金-銅三核錯体の [Pt₂Cu(NH₃)₄(piam)₄](PF₆)₂ (piam = pivalamidate)と[Rh₂(O₂CCH₃)₄] (= [Rh₂])を混合すると, -Rh-Rh-Pt-Cu-Pt-と3種類の金属が規則的に並んだ常磁性一次元鎖錯体(1)が生成す ることを見いだしている^[2].本研究では,不対電子数のより多いコバルトを規則的に 一次元鎖内に組み込み, ESR, XPS, 磁化率測定を基に,金属酸化数とスピン状態を明 らかにし,磁気特性を追跡した.

【結果・考察】CoCl₂と[Pt(NH₃)₂(piam)₂], NaPF₆を H₂O 中で 1:2:2 で混合し, 薄紫色粉 末の[Pt₂Co(NH₃)₄(piam)₄](PF₆)₂ (= **PtCoPt**) を得た. X 線構造解析の結果, コバルトが白 金に Pt-Co = 2.6356(8) Å でサンドイッチされた三核構造を形成していた. 組成から Pt(+2)-Co(+2)-Pt(+2)と考えられる. MeCN 中でのサイクリックボルタンメトリーの結 果, $E_{1/2}$ = 492 mV に可逆的な酸化還元波がみられ, 1 電子酸化可能であることが分かった. 固体 77 K の ESR 測定の結果, g_{\perp} = 4.25, g_{\parallel} = 2.34 の軸対称シグナルがみられ, Co(+2)は高スピン状態で, 3 つの不対スピン(S = 3/2)をもつことが分かった.

PtCoPt と[Rh₂]を 1:1 で EtOH 中で混合し, ゆっくり蒸発させると, 黄色単結晶の {[Pt₂Co(NH₃)₄(piam)₄][Rh₂(O₂CCH₃)₄]}_n(PF₆)_{2n} (2)が析出した.2のX線構造解析の結果, -Rh-Rh-Pt-Co-Pt-と並んだ一次元鎖錯体であった(Fig.1).2の金属間距離は Pt-Co = 2.6460(5) Å, Rh-Rh = 2.3880(18) Å, Pt-Rh = 2.8395(16) Åであった.組成から, 金属酸化 数は-Rh(+2)-Rh(+2)-Pt(+2)-Co(+2)-Pt(+2)-と考えられる.

2の固体 77 K の ESR の結果, g₁=4.30, g₁=2.31 の軸対称シグナルを示し, PtCoPt と類 似していた.よって, 2 中の Co も高スピン状態で 3 つの不対電子が局在していると考 える. 2 の拡散反射スペクトルでは, E₁(3.45 eV), E₂(1.75 eV), E₃(1.48 eV)の 3 つの特徴

的なピークがみられ、価電子帯と伝導帯の遷移に相当する E_1 は、銅が入ったものに比べ、ほぼ同じであった.また、バンド間に挿入した $\pi^*(Rh_2)$ から伝導帯の遷移に相当する $E_2 \ge E_3$ もほぼ同じであった.磁化率測定の結果、 χT 値は、PtCoPt で 2.3 cm³ K mol⁻¹、2 で 2.3 cm³ K mol⁻¹であり、不対電子 3 つ分に相当することがわかった.PtCoPt は低温になるにつれて、 χT 値が減少し、2 K で 1.5 cm³ K mol⁻¹ となった.これは、スピン –軌道相互作用の影響と考えられる.一方、1 では 250 K 以下から χT 値が減少し、2 K で 0.3 cm³ K mol⁻¹ となった.これは、金属結合を介し、Co(+2)間で反強磁性的相互作用が働くためで、J = -0.47 cm⁻¹の銅に比べ、はるかに大きいことが考えられる.当日は、その詳細な測定データを加えて議論する.

Fig 1. Crystal structure of PtCoPt (left) and 2 (right).

Fig 2. a) CV of **PtCoPt**, b) ESR of **PtCoPt** and **2**, c) diffuse reflectance spectra of **1** and **2**, d) magnetic susceptibility measurements.

【参考文献】

- [1] K. Uemura, Dalton Trans., 2017, 46, 5474–5492.
- [2] K. Uemura, M. Ebihara, Inorg. Chem., 2013, 52, 5535-5550.

4P045

シミュレーションによるハイエントロピー合金熱電材料の物性評価

¹京大学際セ,²エジプト日本科技大 〇中村康一^{1,2}

Evaluation of Physical Properties for High-Entropy-Alloy Thermoelectric Materials by Simulation

Koichi Nakamura^{1,2}

¹ C-PiER, Kyoto University, Japan ² Department of Materials Science and Engineering, E-JUST, Egypt

[Abstract] Thermoelectric and mechanical properties of high-entropy alloy (HEA) models with Cu atoms into $(Bi,Sb)_2(Te,Se)_3$ system have been analyzed through molecular dynamics and first-principles simulations. In the molecular dynamics simulation, atomistic $Bi_{32}Sb_6Te_{38}Se_{19}Cu_5$ HEA models including more than 10^4 atoms were introduced under the three-dimensional periodic boundary condition, and the isothermal-isobaric (*NPT*) ensemble was adopted for melting, cooling, and annealing of HEA models using appropriate emperical interatomic potentials. Some fragments of the models were extracted after annealing, and the density-functional-theory calculations were carried out for the analysis of the electronic states of these HEA fragments and nanostructures. The time evolution of molecular dynamics processes and physical properties such as the Seebeck coefficients, phonon diffusion, and bulk moduli of the models shall be discussed from the view point of molar entropy of mixing.

【序】 固体内電子による熱電効果は電子系の乱雑さが大きいほど顕著になることが 知られており,構成元素が多数で力学的強度や熱安定性・耐食性にも優れたハイエン トロピー合金材料は,新規高性能熱電変換材料の有望な候補としてさまざまな熱電変 換デバイスへの幅広い応用が期待されている.著者らは熱電変換材料への Cu 混入に おける力学特性への影響を実験的に検証しているが[1],本研究では既に高性能熱電材 料として広く研究されている (Bi,Sb)₂(Te,Se)₃系に相当量の Cu を混入させたハイエン トロピー合金の原子系モデルを導入し,分子動力学シミュレーションにより合金の内 部構造や力学特性を解析するとともに,その一部を抽出した構造モデルの電子状態計 算を行い,熱電変換特性を評価した.

【分子動力学シミュレーション】 初期構造として Bi₂Te₃の R3m 結晶をベースにラン ダムな原子置換を施した 11340 個の原子(組成比 Bi₃₂Sb₆Te₃₈Se₁₉Cu₅)を含む立方体の 単位格子を導入し、三次元周期境界条件の下で分子動力学シミュレーションを行った. ハイエントロピー合金のような多元系では、一般的に混合エントロピー ΔS_{mix} が $-k_B \sum_i Ni ln(Ni/N)$ として定義できる.ここで N_i は i 番目の元素の原子数, N は全原子数, kB は Boltzmann 定数である.系全体としての ΔS_{mix} は定数であるが、エントロピーは示 量変数なので局所量 $\Delta S_{n,mix}$ の総和 ΔS_{mix} ^D = $\sum_n \Delta S_{n,mix}$ として系の乱雑さを評価すること ができる[2].図1に示すような温度 T および時間 t の設定で NPT アンサンブルとし て溶融・急冷・アニールの各過程をシミュレートしたところ、時間発展に伴う系の乱 雑さの変化が確認された.

【熱電変換特性解析】 アニール処理した単位格子から約 150 原子からなる局所構造 をいくつか抽出してバルクや低次元ナノ構造を表現する周期構造モデルを作成し,

PAW 法による第一原理電子状態計算を行った. 各モデルにおける Seebeck 係数は,得られた電子構造から

$$S(r) = -(1/eT) \left[\left(\int g(\varepsilon) |\varepsilon - \varepsilon_0|^r \varepsilon v^2(\varepsilon) (df_0/d\varepsilon) d\varepsilon \right) \int g(\varepsilon) |\varepsilon - \varepsilon_0|^r v^2(\varepsilon) (df_0/d\varepsilon) d\varepsilon \right] - \varepsilon_{\rm F} \right]$$

によりキャリア散乱定数 r の関数として見積もることができる[3,4]. ここで e は電気 素量,g(e) はキャリア状態密度, a はバンド谷または頂上のエネルギー,v²(e) はキャ リア速度 2 乗,fo は Fermi-Dirac 分布, a は Fermi エネルギーであり,キャリアが占有 するエネルギー区域を積分範囲とする.図 2 に示すようなスラブ近似を用いたナノフ ィルムモデルについて,いくつかのモデルの S(0) とモル混合エントロピームSmix との 相関を図 3 に示す.組成を変えた場合,キャリア状態密度そのものよりも Fermi エネ ルギーが大きく変動することによって Seebeck 係数等の熱電指標に影響を与えること が示されたが,系の乱雑さとの相関については詳細な議論が必要である.分子動力学 シミュレーションによる弾性率の解析結果や,フォノン構造の乱雑さが熱伝導指標[5] に与える影響も含め,詳細は当日発表する.

Fig. 1. Temperature (blue line) and example of ΔS_{mix}^{D} (green line) with 512 regions for a Bi₃₂Sb₆Te₃₈Se₁₉Cu₅ HEA model in the melting, cooling, and annealing processes. Red line indicates the ideal maximum value of ΔS_{mix}^{D} for this model.

S(0) at 300 K and molar entropy of mixing for some HEA

 $f_{g} = \frac{160}{180} - \frac{e}{100}$ $I_{10,8} = 11 = 11.2 = 11.4 = 11.6 = 11.8 = 12$ Entropy of mixing ΔS_{mix} (J/K·mol) Fig. 3. Relationship between the calculated Seebeck coefficient

【参考文献】

nanonofilm models, a-f.

[1] M. A. Mansour, A. Abd El-Moneim, and K. Nakamura, Key Eng. Mater. 735, 205 (2017).

- [2] S. Elkatatny, M. A.-H. Gepreel, and K. Nakamura, ICMSE-RAC 2018, Alexandria, Egypt, 288 (2018).
- [3] K. Nakamura, Jpn. J. Appl. Phys. 55, 06GJ07 (2016); 56, 06GH04 (2017).
- [4] K. Nakamura, Solid State Phenom. 258, 77 (2017).
- [5] K. Nakamura, Jpn. J. Appl. Phys. 57, 06HE04 (2018).

Fig. 2. A 148-atom slab model of 2-nmthick HEA nanonofilm for $Bi_{34}Sb_7Te_{36}Se_{18}Cu_5$ (model **a**).

有機無機ペロブスカイトのバンドギャップ制御に関する理論的研究

¹東大先端研,²東大院総合文化 〇城野亮太¹,瀬川浩司^{2,1}

Theoretical Study of the cation effects on the Band–gap of Lead Triiodide Perovskite Materials

•Ryota Jono¹, Hiroshi Segawa^{2,1}

¹ Research Center for Advanced Science and Technology, The University of Tokyo, Japan ² Graduate School of Arts and Sciences, The University of Tokyo, Japan

(Abstract)

Lead triiodide perovskite APbI₃ such as MAPbI₃ and FAPbI₃ is one of the fundamental materials showing panchromatic coloration, ambipolar transport and good charier mobility. Its derivatives by A-site substitution have been investigated and developed for controlling bandgap. One of the most important role of A-site cation is deforming the PbI₃ framework. On the other hand, the electronic structure of A-site cation has not been focused so far, although some inconsistent between the experimental results and our knowledge has been reported. For example, the experimentally observed bandgap of the Cs_x MA_{1-x}PbI₃ shows that the lattice parameter decreases with Cs ratio but the bandgap increases. It is explained as the bandgap of CsPbI₃ is larger than that of MAPbI₃ but theoretical understandings from electronic structure of A-site cation have not been provided. To open the potential of applications using perovskite, further controlling of the band gap is needed. In this work, we elucidate the cation effects on the bandgap of cubic lead triiodide perovskite by using Cs⁺, MA⁺ and FA⁺.

【序】

有機無機混合材料である ABX₃ペロブスカイト型太陽電池は,現在研究室レベルでの光電変換効率は 20%を超え,実用化へ向けた研究が精力的に行われている.[1] 特に CH₃NH₃PbI₃のような B サイトに鉛,X サイトにヨウ素を配置したペロブスカイトは黒色で電荷分離効率や電荷移動度が高いため注目されており,A サイトカチオン置換によって光物性の最適化が検討されている。例えば,MAPbI₃と CsPbI₃を混合した Cs_x MA_{1-x}PbI₃は Cs 量が増大するに連れ格子は小さくなりバンドギャップは大きくなることが知られている。これは CsPbI₃のバンドギャップは MAPbI₃のバンドギャップ よりも大きいためと説明されているが,なぜ CsPbI₃のバンドギャップは MAPbI₃のバンドギャップ

本研究では lead triiodide ペロブスカイトを用いて CsPbI₃, MAPbI₃, FAPbI₃のバンド ギャップがどのように決定されているのかを理論・計算科学的見地から明らかにした ので報告する.

【方法 (理論)】

全ての APbI₃の DFT 計算は Quantum Espresso を用いて行った. 構造最適化は PBEsol 汎関数,得られた最適構造での一点計算には HSE06 汎関数を用いた. Pb については $(5d)^{10}(6s)^2(6p)^2$, I については $(5s)^2(5p)^5$ の価電子について考慮し、ノルム保存型 擬ポテンシャルを用いてカットオフエネルギー60 Ry のもとで展開した平面波基底を 用いて計算した. PbI₃⁻骨格は Cubic 構造を仮定し、分率座標で Pb は(0,0,0), I は(½,0,0), (0, ½,0), (0,0, ½)に配置した.

【結果・考察】

Fig. 1 は CsPbI₃, MAPbI₃, FAPbI₃につ いて格子定数を変化させたときの valence band maximum (VBM)および conduction band minimum (CBM)をプロ ットしたものである. VBM を構成する 軌道は Pb(6s)と I(5p)の反結合性軌道で あるため、格子定数を大きくすること によって軌道エネルギーが安定化する. このことはこれまでに報告されている 実験結果[2]と一致する. さらに VBM は A サイトカチオンの種類には依存せ ずほぼ同じ値を示した.一方で CBM は Pb(6p)の非結合性軌道からなるため格 子定数に依存しなかったが, A サイト カチオンによって異なる値を取ること がわかった.

Fig. 2 は Cs をプローブとして PbI₃⁻ 骨格内で動かしたときの CBM と VBM の値をプロットしたものである. 横軸 には Pb と Cs の間の距離 r(Pb-Cs)をと った. VBM は r(Pb-Cs)には依存せずほ ぼ同じ値をとったのに対し、CBM は r(Pb-Cs)が短くなるのにつれて安定化 した.従ってカチオンの位置が変わる ことによって, CBM を構成する Pb(6p) 軌道のエネルギーを安定化させている ことがわかった.構造最適化された CsPbI₃のCBMは6px,6py,6pzに由来し て三重に縮退しているが、PbI₃-骨格内 での A サイトカチオンがこれらの軌道 に対して非対称に相互作用するため縮 退が解け、縮退時よりも安定な軌道が 現れることがわかった.安定化量や MAPbI₃, FAPbI₃の場合についての結果 は当日報告する.

Fig 2: CBM & VBM of CsPbI₃ whose Cs position are systematically placed in the space of PbI₃⁻⁻ framework

【参考文献】

- [1] Nakazaki, J. and Segawa, H. J. Photochem. Photobiol. C 35, pp.74-107 (2018)
- [2] Foley, B.J. et al, Appl. Phys. Lett. 106, 243904 (2015)

π-d 相互作用を持つ金属フタロシアニン混晶の 分子設計に関する理論的研究

¹山口大院・創成科学,²熊本大院・先端科学 〇隅本倫徳¹,藤本 斉²

Theoretical Investigation on Molecular Design of Mixed Crystal in Metal Phthalocyanines with π -d Interaction

•Michinori Sumimoto¹, Hitoshi Fujimoto²

¹ Graduate School of Science and Technology for Innovation, Yamaguchi University, Japan ² Faculty of Advanced Science and Technology, Kumamoto University, Japan

[Abstract] The electronic structures and absorption spectra for mixed crystal of three model dimers (X, α and β -type) using lithium phthalocyanine (LiPc), iron phthalocyanine (FePc) and the others were investigated by the DFT calculation. The difference in the SOMO-SOMO overlap is important in estimating the possibility of molecular design of mixed crystal structure. In the X-type model dimer using LiPc and FePc, intermolecular interaction between π -orbital (SOMO) of LiPc and d-orbital (SOMO) of FePc was confirmed. In the β -type model dimer using LiPc and FePc, the SOMOs overlap poorly with each other due to the tilt angle. We have attempted the film-forming method by co-evaporation for the X-type model dimer.

【序】フタロシアニン (Pc) 環の中心に金属の配位した金属フタロシアニン (MPc) は、耐熱性,耐薬品性など使用特性の面で優れており、半導体、太陽電池、非線形光 学材料等の多くの分野において新たな機能性材料としての可能性が期待されている。 MPc は中心金属により、分子構造や電子状態が変化し、分子物性が大きく変化する。 また、MPc は,同一分子のスタッキングにより様々な結晶系を持つことが知られてい る。例えば, Pc 環の π 軌道に不対電子を持つリチウムフタロシアニン (LiPc)の場 合,反強磁性を示す X-form と,不対電子間に相互作用がなく単量体と同様の性質を 示す α -および β -form の,三種類の結晶構造が報告されている (Figure 1)。これは, 不対電子の分子間 π - π 電子

相互作用の有無により起こる物性変化である。

近年,様々な分野で機能性材 料として使用されている鉄 フタロシアニン(FePc)は, Pc 環の π 電子と Fe の 3d 電 子により形成され,分子自身 は Fe の 3d 軌道に不対電子を 持つという興味深い電子構 造をした開殻分子である。こ の例のような、電気伝導性を 担う π 電子と局在性の強い d

Figure 1. Crystal structures of LiPc

電子が近接する π-d 電子系は、それぞれが持つ物性だけでなく、両者をうまく相互作 用させることにより生じる新たな複合物性の発現が期待される。しかしながら、もと もと、π電子とd 電子の相互作用は非常に弱いため、混晶の調製には、これらの相互 作用が強くなる系を見出す必要がある。

本研究では、LiPcの分子配列および物性の異なる三種類の結晶構造を利用し、LiPc と FePcの混晶構造およびそれら以外の MPcの混晶の可能性を検討した。また、その ときの分子間相互作用や物性への影響を理論計算を用いて評価した。

【計算方法】計算は Gaussian 09 プログラムを使用した。構造最適化、及びエネル ギー計算には DFT 法、励起エ

ネ ル ギ ー 計 算 に は Time-dependent DFT (TDDFT) 法を用いて計算した。二量体 の構造最適化には、過去の研 究^{[1],[2]}で良好な結果が得られ た M06 汎関数を使用した。 TDDFT 法では、B3LYP の汎関 数を用いた。また、Fe 原子に は SDD を、その他の原子には 6-311G(d)の基底関数をそれぞ れ用いた。

【結果・考察】LiPcのXお よびβ-form 結晶系をモデルと した二量体 (X-およびβ-type) の一分子をFePc に置き換えた モデル二量体 (X-LiFe および β-LiFe) について、構造最適化 を行った。X-LiFe 二量体では、 X-LiFe 二量体において、Pc 環

Figure 2. Optimized geometry of X-LiFe dimer.

Figure 3. Optimized geometry of β -LiFe dimer.

の二面間距離は 3.192 Å と計算され、過去に報告した LiPc X-type dimer のそれ(3.095 Å) より約 0.1 Å ほど長いが、分子間相互作用がみられる距離であると考えられる。 一方、β-LiFe 二量体において、二面間距離は 4.718 Å と計算され、LiPc β-type dimer のものよりわずかに短いが、LiPc β-type dimer のときと同様に分子間に相互作用はなく、単量体としての性質が強い系であることが推察される。現在、これらの混晶構造に関して、真空中で共蒸着させることによる製膜を行っている。また、これらの二量体構造を用いて、励起エネルギー計算を行った。これらの詳細な軌道相互作用の解明、吸収帯の帰属、軌道エネルギーおよび分子軌道などの解析については当日の発表で報告する。

【参考文献】

- [1] M. Sumimoto, Y. Kawashima, D. Yokogawa, K. Hori, H. Fujimoto, J. Comput. Chem. 2011, 32, 3062.
- [2] M. Sumimoto, Y. Kawashima, D. Yokogawa, K. Hori, H. Fujimoto, Int. J. Quantum Chem. 2013, 113, 272.

潤滑油分子の分解過程における水素発生機構に関する量子化学的解析

¹名大院情報,²NTN,³京大ESICB,⁴CREST-JST 〇伊藤元博^{1,2}, 鈴木雄一¹, 張賀東¹, 古賀伸明¹, 長岡正隆^{1,3,4}

Quantum chemical analysis on hydrogen generation mechanism in decomposition process of lubricant molecules

oMotohiro Ito^{1,2}, Yuichi Suzuki¹, Hedong Zhang¹, Nobuaki Koga¹, Masataka Nagaoka^{1,3,4}

¹ Graduate School of Informatics, Nagoya University, Japan

² Advanced Technology R&D Center, NTN corporation, Japan

³ Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Japan ⁴ Core Research for Evolutional Science and Technology (CREST), Japan Science and

Technology (JST), Japan

[Abstract] In alternators used for automotive electrical instruments and auxiliary devices, it is known that an internal bearing breaks prematurely due to a hydrogen brittle flaking. It is considered that the flaking mechanism is caused by decomposition of lubricant in the bearing and penetration of a part of the generated hydrogen into the steel. However, the mechanism of the hydrogen generation has not been clarified yet in detail. Therefore, in the present study, we targeted two kinds of commonly used lubricants in order to examine that mechanism by computational approaches. More specifically, we estimated their Gibbs free energies of dissociation reaction, hydrogen elimination reaction, and hydrogen production reaction from the results of QM calculations. As a result, it was found that the activation free energies we obtained in the hydrogen generation mechanism of the two lubricants corresponds to the experimental results of the hydrogen generation amount by the vacuum sliding test.

【序論】自動車用オルタネータでは、内部の軸受が水素脆性はく離によって早期破損 することが知られている。そのはく離機構は、次のように考えられている(Fig. 1)[1,2]。 先ず、軸受内の転動体と軌道面の間にすべりが発生する。次に、このすべりによって、

油膜が薄くなり転動体と軌道 面の直接接触が起きて、軌道面 が摩耗し、鋼新生面が露出する。 最後に、露出した鉄の触媒作用 によって、主に軸受内の潤滑油 が分解し、発生した水素の一部 が鋼中に侵入することで水素 脆性はく離が生じる。しかしな がら、その水素発生機構は未だ 詳細には明らかになっていな い。そこで、本研究では、一般 的に用いられる 2 種類の潤滑 油を対象に、QM 計算をもとに 潤滑油分子の分解過程を調査 し、水素発生機構におけるギブ ズ自由エネルギーを求めた。

Fig. 1 Mechanism of hydrogen brittle flaking

【方法】 異なる2種類の潤滑油として、Fig.2 に示すアルキルジフェニルエーテル(ADE) とポリ-α-オレフィン(PAO)分子を対象と した。これらの潤滑油分子を用いて、QM計 算(B3LYP/6-31(d,p))をもとに、気相中におけ る結合解離反応後、水素脱離反応後、及び水 素生成反応の遷移状態と反応後のギブズ自 由エネルギー(298K, 1atm)を算出した。

【結果・考察】ADE と PAO それぞれの始状 態から終状態(水素生成後)に至るまでの分 解過程を調査した。その結果、ADE では、 アルキル鎖末端から3,4番目の C-C 結合が 解離し、PAO では、2つの第3級炭素の C-C 結合が解離し易いことが分かった。両者はと もに、結合解離反応で生成したアルキルラジ カルから H・が脱離し、それが別の潤滑油分 子と反応することで、最終的に水素が生成す

Fig. 2 (a) ADE and (b) PAO molecules (White: Hydrogen, Gray: Carbon, Red: Oxygen)

ると予想される(Fig. 3)。それを受けて、Table.1に始状態から終状態(水素生成後)に至 る各状態のギブズ自由エネルギーを示した。その結果、ADE と PAO の各状態のギブ ズ自由エネルギーはほぼ同じであることが分かり、ADE と PAO の分解し易さはほぼ 同じかつ水素発生量は同程度であることが示唆される。実際、この結果は真空摺動試 験による水素発生量の実験結果[3]と一致し、本研究で予想した水素発生機構(Fig. 3) と矛盾しないことが分かった。従って、鉄触媒無しでの水素発生機構は、C-C 結合解 離反応、水素脱離反応、水素生成反応の分解過程を順番に経て、水素発生に至ると考 えられる。発表当日は、この水素発生機構と鉄触媒の作用機構について、より詳細に 議論する予定である。

Fig. 3 Predicted hydrogen generation mechanisms of (a) ADE and (b) PAO

Table 1. Gibbs free energies of each state from the initial state to the final state (kcal/mol)

Lubricants	Initail state	After bond disociation	After H desorption	TS state	Final state
ADE	0.0	55.7	85.1	92.0	62.2
PAO	0.0	52.0	81.6	88.6	61.6

【参考文献】

- [1] K.Tamada, H. Tanaka, WEAR, 199, 245 (1996).
- [2] N. Kino, K. Otani, JSAE Review, 24, 289 (2003).

[3] M. Kohara, T, Kawamura and M. Egami, Tribology Transactons, 49, 53 (2006).

4P050

Vibrational Spectrum of the Water Bend at the Charged Interfaces Probed by Heterodyne-Detected Sum Frequency Generation

• AHMED, Mohammed^{1,2}; NIHONYANAGI, Satoshi^{1,2}; TAHARA, Tahei^{1,2}

¹Molecular Spectroscopy Laboratory, RIKEN, Japan

² RIKEN Center for Advanced Photonics (RAP), Japan

[Abstract]

We previously reported the $\text{Im}\chi^{(2)}$ (imaginary part of $\chi^{(2)}$, the second-order nonlinear susceptibility) spectra of water at the air/water and NaI aqueous solution interface in the bend region. They exhibit positive peaks at ~1660 cm⁻¹, and we concluded that the HOH bend band arises by the quadrupole mechanism that is beyond the conventional dipole approximation. In this study, we measured $\text{Im}\chi^{(2)}$ spectra in the HOH bend region at various charged surfactant and lipid monolayer interfaces. We found that the HOH bend vibrations at all these interfaces exhibit positive peaks, irrespective of the sign of the charge of the head group, and that the peak positions are different at different monolayers. This observation indicates that the Im $\chi^{(2)}$ spectrum in the bend region appear with the quadrupole mechanism but it originates from the water at the interface.

[Introduction]

Molecular-level understanding of structure and dynamics of interfacial water is of particular importance in fundamental and applied sciences. The structure and dynamics of water at air/water and charged interfaces has been intensively studied by measuring the OH stretching vibration of water using vibrational sum frequency generation (VSFG) spectroscopy [1]. However, the interpretation of OH stretch spectra is often complicated due to the Fermi resonance between the symmetric OH stretch vibration and the overtone of the HOH bending mode. Unlike the OH stretch band, the bending mode of water is free from such coupling and can provide complimentary information to that obtained from the OH stretch band. Vibrational spectra of the bending mode of water at the air/water interface and the aqueous interface of negatively charged sodium dodecylsulfate (SDS) were measured by using conventional VSFG spectroscopy [2,3]. The homodyne VSFG and previous MD simulation studies [3.5] claimed that the interfacial water molecules with "H-down" and "H-up" orientation show positive and negative peaks, respectively, in the bend region. A serious drawback of conventional VSFG is that it can only provide spectra of the absolute square of $\chi^{(2)}$. The $|\chi^{(2)}|^2$ spectra obtained with conventional homodyne detection is heavily deformed due to the interference between the resonant peak(s) and nonresonant background, which makes interpretation difficult and often generates misunderstanding. Unlike the conventional VSFG, heterodyne-detected VSFG (HD-VSFG) enables us to obtain $Im\chi^{(2)}$ spectra, which is free from spectral deformation by nonresonant background and provide direct information about the vibrational resonance of interfacial molecules [1]. We previously reported for the first time an experimentally obtained $\text{Im}\chi^{(2)}$ spectrum of the air/water interface in the HOH bend region [4]. The observed $\text{Im}\chi^{(2)}$ spectra of water at the air/water and negatively charged NaI aqueous solution interfaces show positive bands at 1660 cm⁻¹ and the intensity of the $Im\gamma^{(2)}$ spectrum of NaI aqueous solution interface is larger than that of the air/water interface, which is inconsistent to the flip-flop orientation of surface water established in the OH stretch region. These observations were elucidated by calculating quadrupole contributions beyond the conventional dipole approximation.

Here, we extend our study on the bending mode to various charged interfaces for

obtaining deeper understanding about the quadruple mechanism of water bending mode.

[Methods]

The optical setup for HD-VSFG measurement was described in detail previously [4]. Briefly, a narrow-band visible ω_1 pulse (795 nm, *s*-polarized) and a broadband infrared ω_2 pulse (1500-1900 cm⁻¹, *p*-polarized) were first focused into a y-cut quartz crystal and then onto the sample surface to generate sum frequency ($\omega_1 + \omega_2$, *s*-polarized). The former SFG generated from the y-cut quartz was used as a local oscillator (LO) and passed through a glass plate (2 mm) to be delayed with respect to the latter SFG generated from the sample interface. The two SFG beams are collinearly guided into a polychromator where they were dispersed and temporally stretched to produce interference fringes in the frequency domain. The interference fringe from the sample combined with the calibration using the reference z-cut quartz allow us to obtain complex spectra of the second-order nonlinear susceptibility $\chi^{(2)}$.

[Results and Discussion]

Figure 1 shows the experimentally obtained $Im\gamma^{(2)}$ spectra of HOH bend at the air/ water interface as well as positively charged (CTAB and DPTAP) and negatively charged (SDS and DPPG) monolayer/water interfaces. The $Im\chi^{(2)}$ spectra in this Figure reveal two important features of the bend band of water. First, the bend band show positive peaks at all charged interfaces, irrespective of the sign of the head group. This provides a strong evidence for that quadruple mechanism gives rise to the $Im\chi^{(2)}$ band of water in the bend frequency region, being consistent with our previous conclusion [4]. The second key feature of the $Im\chi^{(2)}$ spectra is that the peak amplitude and frequency position are different for different monolayer. This spectral change indicates that the $Im\chi^{(2)}$ spectrum in the bend region somehow represents the properties of the interfacial water, even though it has the quadrupole origin. This implies that the origin of $Im\chi^{(2)}$ in the bend region is interface quadrupole induced by the large gradient of the electric field at the interface. We discuss the mechanism in detail in the poster.

[References]

[1] S. Nihonyanagi et al. Annu. Rev. Phys. Chem. 64, 579 (2013)

- [2] M. Vinaykin et al. J. Phys. Chem. Lett. 3(22), 3348 (2012)
- [3] C. Dutta et al. J. Phys. Chem. Lett. 8(4), 801 (2017)
- [4] A. Kundu et al. J. Phys. Chem. Lett. 7(13), 2597 (2016)
- [5] Y. Nagata et al. J. Phys. Chem. Lett. 4(11), 1872 (2013)

Fig. 1. $Im\chi^{(2)}$ spectra of the air/ water (H₂O) (Black), CTAB/H₂O (Red), DPTAP/H₂O (Green), SDS/H₂O (Blue), DPPG/H₂O (Magenta) interfaces in the HOH bend frequency region. Solid lines show the Gaussian fit.

全内部反射測定に向けた 近赤外超広帯域マルチプレックスCARS分光装置の構築 筑波大院・数理物質

○石川将之,奥野将成,石橋孝章

Construction of a near-infrared ultrabroadband multiplex CARS spectrometer for total internal reflection measurement

OMasayuki Ishikawa, Masanari Okuno, Taka-aki Ishibashi Graduate School of Pure and Applied Sciences, University of Tsukuba

[Abstract]

We have constructed a near-infrared ultrabroadband multiplex CARS spectrometer for measuring CARS spectra of the vicinity of solid/liquid interface in the total internal reflection (TIR) geometry. We used a nanosecond 1064 nm microchip laser as the pump laser and a supercontinuum (SC) generated from a photonic crystal fiber as the Stokes laser. Owing to the ultrabroadband SC (600–1900 nm), the spectrometer can excite multiple vibrational modes in the spectral range of more than 2500 cm⁻¹, simultaneously. As a test measurement, a CARS spectrum of a CaF₂/ethanol interface was successfully obtained in the CH stretching region (2750–3050 cm⁻¹). The incidence angles of ω_1 and ω_2 laser beams were 73.4° and the estimated depth of the probed volume was about 150 nm. This spectrometer will be applied to TIR-CARS measurement of lipid bilayer membranes at solid/liquid interface.

【序】コヒーレント・アンチストークス・ラマン散乱(CARS)分光法では、2 つのレーザー光(ポン プ光 ω_1 、ストークス光 ω_2)を時間および空間的に重ね合わせ試料に照射し、発生する振動数 $2\omega_1-\omega_2$ の信号光を検出する。 $\omega_1-\omega_2$ が試料分子のラマン活性振動モードの振動数 Ω と一致 するとき共鳴的に信号光が増大するため、この光学過程を利用して振動分光を行うことがで きる。全内部反射(TIR)現象を CARS 分光法に応用することで、励起光がエバネッセント光 として浸透する固体/液体界面近傍の領域のみの振動スペクトルを有効に観測できること が期待される。本研究では、固体/液体界面近傍の CARS 分光測定のための近赤外超広 帯域マルチプレックス CARS 分光装置を構築した。構築した装置は ω_2 光に波数幅 2500 cm⁻¹を超えるスーパーコンティニューム光を用いており、空気/シクロヘキサン界面 から 750-3050 cm⁻¹にわたる広い波数領域で振動バンドが観測できることを確認した。さら に、CH 伸縮振動領域(2750-3050 cm⁻¹)について、CaF₂/エタノール界面から TIR-CARS スペクトルを得ることに成功した。

Fig. 1. (a) Experimental setup of the near-infrared ultrabroadband multiplex CARS spectrometer. Experimental geometries measured for (b) air/liquid interface and (c) solid/liquid interface in TIR.

【**構築した装置**】 構築した近赤外超広帯域マルチプレックス CARS 分光装置の模式図を Fig. 1a に示す。Nd:YAG マイクロチップレーザー(繰り返し 3 kHz, パルス幅 ~1 ns, 中心波長 1064 nm)を光源とし、狭帯域ポンプ光 ω_1 (波数幅 < 1 cm⁻¹)とフォトニック結晶ファイバーを 用いて超広帯域ストークス光 ω_2 (波数幅 > 2500 cm⁻¹、波長域 0.6~1.9 µm)を得た。ポンプ 光は、ノッチフィルターによりストークス光と同軸に試料部へと導入した。試料から発生した広 帯域 CARS 信号光は分光器で分散し CCD 検出器で検出した。 ω_1 、 ω_2 の入射角は 73.4°、 レーザーパワーはそれぞれ 22 mW、7 mW、偏光はそれぞれ P 偏光、ランダム偏光とした。 気体/液体界面測定時は、テフロン製のセルに測定試料を 20 mL 満たし測定した。(Fig. 1b) 固体/液体界面測定時は、直径 20 mm

の CaF₂ 半円筒型プリズムを使用した。(Fig. 1c)

【結果・考察】構築した装置を用いて空気/ シクロヘキサン界面の指紋領域(750-1350 cm⁻¹)とCH伸縮振動領域(2750-3050 cm⁻¹) を測定した結果をFig.2に示す。測定は分光 器の中心波長のみを変えて行った。2つの領 域でシクロヘキサンに由来する振動バンドを 観測できたことから、構築した装置で750-3050 cm⁻¹の広い波数領域にわたって CARS スペクトルを得られることを確認した。

次に、CaF。/エタノール界面の CH 伸縮 振動領域をTIR-CARS測定した結果をFig. 3a に示す。ω₁、ω₂の入射角 73.4°は CaF₂ /エタノール界面の臨界角 71.3°より大き い。この実験条件では、固体/液体界面近 傍の液体からの CARS 光は、深さ 150 nm 程度から発生していると見積もられる。比較 のため、空気/エタノール界面の CH 伸縮 振動領域を CARS 測定した結果を Fig. 4a に示す。広帯域ω2 レーザーのスペクトル は、それぞれ CaF2/空気界面、空気/ GaAs 結晶界面から得られた振動非共鳴 CARS スペクトル(Fig. 3b, 4b)で規格化す ることで補正した。得られた TIR-CARS スペ クトル(Fig. 3c)には、エタノールに由来す る振動バンドが下向きに観測された。振動 バンドの波数は、空気/エタノール界面か ら観測された上向きの振動バンドに近い波 数で得られた。このように、構築した装置で TIR 配置での CARS スペクトルを測定でき た。今後、CaF2 プリズム上に構築した脂質 二重膜に、開発した装置を応用する予定 である。

Fig. 2. Multiplex CARS spectra of air/cyclohexane interface in the fingerprint region (750-1350 cm⁻¹) and the CH stretching region (2750-3050 cm⁻¹).

Fig. 3. Multiplex TIR-CARS spectra of solid/liquid and solid/air interfaces in the CH stretching region. (a) a raw spectrum of the CaF₂/ethanol interface, (b) a raw (vibrationally nonresonant) spectrum of the CaF₂/air interface, and (c) a normalized spectrum of the CaF₂/ethanol interface.

Fig. 4. Multiplex CARS spectra of air/liquid and air/solid interfaces in the CH stretching region. (a) a raw spectrum of the air/ethanol interface, (b) a raw (vibrationally nonresonant) spectrum of the air/GaAs(110) crystal interface, and (c) a normalized spectrum of the air/ethanol interface.

有機半導体の電位に依存した界面イオン液体の 局所構造と運動性のMD計算による解析

¹阪大院基礎工,²阪大院工 〇佐藤大輝¹,宮本洋雄¹,田邉一郎¹,稲垣耕司²,森川良忠²,福井賢一¹

Analyses of potential-dependent local structure and dynamics of interfacial ionic liquids on organic semiconductors using molecular dynamics simulation

 Taiki Sato¹, Hiroo Miyamoto¹, Ichiro Tanabe¹, Kouji Inagaki², Yoshitada Morikawa², Ken-ichi Fukui¹
¹ Graduate School of Engineering Science, Osaka University, Japan
² Graduate School of Engineering, Osaka University, Japan

[Abstract] Electric double layer formed at the ionic liquid/organic semiconductor interfaces effectively induces career accumulation, which realizes very low operating voltage of organic field effect transistor. However, molecular behavior at the interface has not been fully understood. In this study, we performed classical molecular dynamics (MD) simulation to analyze the local structure and dynamics of ionic liquid (BMIM-TFSI) at the interfaces. It was found that BMIM cations and TFSI anions on the fullerene ($C_{60}(111)$) electrode are localized at hollow sites surrounded by three C_{60} molecules and atop sites above a C_{60} molecule, respectively, at negative potential. At positive potential, ions of opposite charges were localized at these sites. In contrast to this checkerboard-like structure on the fullerene electrode, interfacial ionic liquid on the rubrene electrode showed higher mobility with rather random configuration regardless of the electrode potential.

【序】イオン液体は新規電解液として期待されており、これを用いた有機電界効果ト ランジスタ(OFET)では従来の1%以下という低電圧での駆動が報告されている^[1]。こ の省電力化はイオン液体と有機半導体電極の界面に生じた電気二重層がキャリアを 効率的に蓄積することで実現されているが、電気二重層領域におけるイオン液体分子 の挙動の微視的な理解は未だ十分でない。そこで本研究では、分子動力学法を用いて イオン液体 BMIM-TFSI と代表的な有機半導体であるフラーレンおよびルブレンとの 界面を再現し、電位に依存した界面イオン液体の局所構造と運動性の変化を評価した。

【実験方法】800 イオン対の BMIM-TFSI^[2,3]をフラーレン C₆₀ 単結晶(6.8790×7.0204 nm²)またはルブレン単結晶(7.2165× 7.1930 nm²)^[4]と真空層で挟み、高さ 20 nm の計算セルを設計 した(Fig. 1)。電圧印加状態を再現するために最表面層の有機 半導体分子の HOMO または LUMO にあたる炭素原子に均一 に点電荷を配置し、バルク領域のイオン数を調整することで 系の中性を保った。Poisson 方程式から電極電位を評価し、 PZC (potential of zero charge)に対して±1.10 V 程度の電位範 囲で実験を行った。いずれの計算も GROMACS-5.0.7^[5]を使 用し、NVT 条件および周期境界条件の下、12.5 ns の平衡化 MD および 20 ns のサンプル MD を 350 K で行った。

Fig. 1. Simulation cells. Red, blue and gray balls represent cations, anions and (left) C₆₀ or (right) rubrene, respectively.

【結果・考察】BMIM(Fig. 2(a)) (a) がもつブチル基は非極性なので、 疎水性相互作用を反映して比較 的電荷の小さい有機半導体側を 常に向いており、電極電位によ る変化は小さい。そこで正電荷 が集中しているBMIMのイミダ ゾリウム環と負電荷をもつ TFSI(Fig. 2(b))に注目し、界面に おけるそれぞれの存在確率の二 次元分布を評価した。フラーレ ン電極近傍において、電荷をも つ赤で示されるイミダゾリウム 環と青で示される TFSI が交互 に並んだ局所構造をとることが 示された(Fig. 2(c, d))。これには BMIM-TFSI のイオンペアサイ ズと C₆₀ 単結晶の格子定数との 一致が寄与していると考えられ る。また負電位側において、イ ミダゾリウム環は3つの Cm分 子に囲まれた hollow サイトに、 TFSIは C₆₀分子の真上にあたる atop サイトに局在しているが、 正電位側ではそれぞれ反対のサ

Fig. 2. Chemical structure of (a) BMIM cation and (b) TFSI anion. 2D distribution of interfacial ionic liquid on (c, d) the fullerene electrode and the (e, f) the rubrene electrode at (c, e) negative potential and (d, f) positive potential. Red, blue and green area represents cation-rich, anion-rich and coexisting or more mobile area, respectively.

イトに局在している。つまり、hollow サイトでは電極との、atop サイトでは hollow サ イトに存在する対イオンとの静電相互作用が支配的であり、電位極性によって安定な サイトが異なることが明らかとなった。

一方、ルブレン電極近傍での二次元分布図はいずれの電極電位においても緑で示される領域が広く、界面イオン液体は比較的ランダムに運動していることが確認された (Fig. 2(e, f))。このランダムな局所構造と高い運動性は BMIM-TFSI のイオンペアサイ ズとルブレン単結晶の格子定数が大きく異なるためと考えられる。また電極電位によ る変化が小さいのは、C₆₀単結晶表面の hollow サイトのように電極との静電相互作用 によってイオンが強く安定化されるサイトがルブレン表面には存在しないためだと 考えられる。したがって、静電相互作用が重要な役割を果たす界面イオン液体の電位 応答の描像は有機半導体電極の表面形状によって大きく異なると言える。これらの界 面挙動はイオン液体と有機半導体表面に局在するキャリアとの相互作用を反映して おり、OFET 動作下でのキャリア伝導を理解する上で重要である。発表では、電極電 位に依存した界面イオン液体の配向や運動性も併せて、より詳細な議論を行う。

【参考文献】

- [1] S. Ono, S. Seki, R. Hirahara, Y. Tominari, J. Takeya, Appl. Phys. Lett., 92, 103313 (2008).
- [2] J. N. C. Lopes, A. A. H. Pádua, J. Phys. Chem. B, 108, 2038 (2004).
- [3] J. N. C. Lopes, A. A. H. Pádua, J. Phys. Chem. B, 108, 16893 (2004).
- [4] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem., 25, 1157 (2004).
- [5] M. Abraham, T. Murtola, R. Schultz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, SoftwareX, 1, 19 (2015).

蓄積電荷測定法による有機/金属界面の電荷注入障壁測定 III

¹兵県大院物質理,²兵県大院工 〇荻野晃成¹,谷村利精¹,小簑剛¹,横松得滋²,前中一介²,田島裕之¹

Determination of injection barrier at metal/organic interface using accumulated charge measurement

•Akinari Ogino¹, Toshiaki Tanimura¹, Takeshi Komino¹, Tokuji Yokomatsu², Kazusuke Maenaka², Hiroyuki Tajima¹

¹ Graduate School of Material Science, University of Hyogo, Japan
² Graduate School of Engineering, University of Hyogo, Japan

[Abstract] In organic thin film device, a charge injection barrier formed by organic semiconductor/ metal contact interface is an significant parameter. In general, it is estimated indirectly by spectrometry (e.g., photoelectron spectroscopy). In contrast, we reported an Accumulated Charge Measurement (ACM) method, which can measure the charge amounts directly to real device structure, recently. The charge injection barrier can be estimated with some approximations by means of the method. In this study, we report the result about the characteristics of metal-free-phthalocyanine/Ag interface measured by the ACM method. The device structure is a capacitor consisting of Al/SiO2(120nm)/H2Pc(80nm)/Ag. The device was fabricated from H2Pc and Ag evaporated under a vacuum on the Al/SiO2 substrate. As the result of the measurements, the hole injection barrier was estimated to be approximately 0.3 eV, and built-in-potential was about 0.4 eV. These values are consistent with of the reported work functions, while the electron injection barrier was not observed.

【序】有機薄膜デバイスにおいて,有機半導体/金属電極界面に生じる電荷注入障壁は 重要なパラメータである。通常、このパラメータは光電子分光などの分光測定によっ て決定される。これに対して、蓄積電荷測定(ACM)による注入障壁決定法について、 我々は最近報告した。この手法では、コンデンサ型のデバイスを作製し、電圧印加時 に電極から注入される電荷総量(蓄積電荷)を測定し、注入障壁を決定する。実デバ イスに近い状態での測定であるため、この実験で得られる注入障壁は、トラップ等す べての影響を含んだものとなる。今回、我々は、研究室で作製した Al を背面電極と するガラス基板においての H₂Pc/Ag 界面の電荷注入障壁や特性を調査した。

【方法 (実験・理論)】

Al 電極上に CVD を用いて SiO₂を成膜した glass 基板上をアセトンに 10 分、アセトンに 5 分、メタノールに 10 分浸漬し洗浄した。次に 1 時間 UV オゾン処理を施した 後、HMDS 処理を施した。真空蒸着によりメタルフリーの phthalocyanine を 120nm、 Ag を 70nm 成膜し、Al/SiO₂/H₂Pc/Ag のコンデンサ型素子を作製した。この試料に真 空雰囲気下で電圧掃引速度 1 V/ms、印加電圧 $V_a = -6-6V$ の範囲で電圧振動法[1]を用いて蓄積電荷 Q_{acc} の測定を行った。オフセット電圧 V_{off} は-2~3V の範囲で設定した。 また $V_{off} = 2V$ として、 $V_a = \pm 1V$, 4V,6V のときに 0.1~4V/ms までの範囲で Q_{acc} の印加速 度依存性を調べた。

【結果・考察】

Fig.1 より、Qaccの傾きがオフセット-2V~3Vの直線において、絶縁層と有機層の合成 容量は1.35 nFであった。正側ではホールが有機層内部まで注入されることにより1.73 nF まで静電容量が増加したが、負側では注入がほとんど起こらなかった。負側でキ ャリアの注入がほとんど起こらなかった理由としては、(i)電子注入障壁が大きく、 暗状態ではあまり注入が起きないこと; (ii)トラップの影響; (iii) 有機層が厚いために トンネルでの注入が起こりにくくなってしまったことが考えられるが、(iii)の膜厚依 存性は定かではなく、現在実験中である。また、背面電極 Al と表面電極 Ag の仕事関 数の差によるビルトインポテンシャルの存在が予想され、正確な電荷注入障壁を見積 もるために必要なフラットバンド状態が成り立っていないことが考えられる。またそ のためには $V_a = 0$ V の時点で正孔が SiO₂/OS 界面に過剰に蓄積されている必要があ り [2]、Voff=1 V~3V のグラフが収束していることから、この範囲においてその状態が 成り立っていると考えられる。Fig.2は閾値電圧が電荷注入障壁となるグラフである。 有機層にかかる内部電圧 V_i は $V_a - O_{acc}/C_I$ (C_I :絶縁層のみの静電容量)で求められる。 また電荷注入量の差である $extsf{_Q}$ は $Q_{acc} - V_a imes C$ (C:絶縁層と有機層の合成容量)で求め られる。図の立ち上がりより、正孔注入障壁は V_{off} = 1~3 V で収束している約 0.3 eV と推定された。また Va=0 V での立ち上がりが約 0.7 eV であることから、ビルトイン ポテンシャルは約 0.4 eV であると考えられる。これらの値は Al, Ag の仕事関数の値 から考えても整合性のある結果となった。また、Voff=0,-1Vの場合のグラフが重なっ ており、トラップの影響であると考えられるが詳細は調査中である。今回の測定は電 圧振動法により蓄積電荷を求めているため、電圧掃引速度と独立である必要がある。 Fig.3は Qacc を掃引速度でプロットしたデータである。図から、4 V/ms 付近では若干 の上昇が見られるが、概ね一定となっていることが分かる。4 V/ms 付近で成り立って いない原因として、トラップによるキャリアの捕捉が起こり、電圧振動法の近似 [1] が成り立っていないためと考えられる。また電圧振動法に対し、直接蓄積電荷を吸い 出す直接法に関しても実験を行う予定である。

Fig. 1. V_a vs Q_{acc} graph.

【参考文献】

H.Tajima et al., Org.Electron., 34,193(2016).
H.Tajima et al., J. Phys. Chem. C, 121, 14725(2017).

Fig.2. Degree of charge injection $\triangle Q$ as a function of internal voltage of OS layer $V_{i.}$.

ペロブスカイト接合面におけるエキシトンの電荷分離

¹城西大理,²城西大院理 齋藤祐希¹,出島康琢¹,東村綾乃¹,〇見附孝一郎^{1,2}

Charge Separation of Excitons on the Heterojunction of a Perovskite Thin Film

Yuki Saito¹, Kotaku Ideshima¹, Ayano Higashimura¹, OKoichiro Mitsuke^{1,2} ¹Department of Chemistry, Josai University, Japan ² Graduate School of Science, Josai University, Japan

[Abstract] Transient luminescence from the photoelectric conversion electrode of the perovskite solar cell was investigated by time resolved dispersed fluorescence spectroscopy. A TiO₂ compact layer c-TiO₂ was deposited by aerosol spray pyrolysis on a cleaned transparent conductive glass FTO. The dimethylformamide solution of PbI₂ was dropped on the c-TiO₂ film followed by spin coating. The substrate was dipped in a 2-propanol solution of CH₃NH₃I, resulting in change into CH₃NH₃PbI₃ crystal. Three different materials were interfaced to the perovskite by spin coating: Poly(methyl methacrylate), phenyl-C₆₁-butyricacid methyl ester (PCBM, the electron-transporting material), or spiro-OMeTAD, the hole-transporting material. We performed time-resolved single photon counting for observing luminescence at ~ 800 nm from the excitons produced by 470 nm laser irradiation. The results suggest that the excitons generated in the perovskite layer have sufficient diffusion length to reach the interface where the excitons are quenched either by the electron- or hole-transporting materials.

【概要】光電変換効率の急速な増加に伴い、ペロブスカイト太陽電池の実用化に向けた開発研究が各所で進められている[1]。本研究ではヨウ化鉛ペロブスカイト中のエキシトンの拡散長およびその寿命を測定する目的で、エキシトンからの光ルミネッセンスを時間分解分光法によって観測した。試料は石英基板、緻密酸化チタン薄膜、ペロブスカイト結晶、電荷輸送物質の4層構造を持つ。電荷輸送物質として、電子輸送体のスピロ化合物またはホール輸送体の PCBM を用いると、800 nm 付近の発光の寿命が1 ns 程度まで減少した。この結果から、平面へテロ接合面でエキシトンが電子とホールに分離すると予想された。

[Introduction]

Because of the rapid increase in their photovoltaic conversion efficiencies, a number of groups are hastening research and development on perovskite solar cells [1]. It has been accepted that the mesoporous TiO_2 layer is not essential for high-efficiency solar cells, since the carrier lifetime and diffusion length of lead halide perovskite are expected to be long enough to realize charge separation at the heterojunction. In the present study, transient luminescence from the photoelectric conversion electrode of the perovskite solar cell was investigated by time resolved dispersed fluorescence spectroscopy to determine the diffusion lengths and lifetimes of lead halide perovskite.

[Experimental methods]

Transparent conductive glass (FTO) substrates were cleaned by ultrasonication in deionized water and ethanol. A TiO_2 compact layer c- TiO_2 was deposited on FTO by aerosol spray

pyrolysis at 500°C using 2-propanol solution of titanium diisopropoxide bis(acetylacetonate), TPA.

For the cell fabrication a mesoporous TiO₂ layer containing 15-25-nm-sized particles and was deposited by spin coating of a TiO₂ paste diluted in ethanol. This TiO₂ layer was subjected to calcination at 500°C. For luminescence spectroscopy deposition of the mesoporous TiO₂ layer was omitted.

The dimethylformamide solution of PbI_2 was dropped on the TiO_2 film followed by spin coating at 6500 rpm. After drying at 70°C for 30 min. we dipped the substrate in a 2-propanol solution of CH_3NH_3I to synthesize $CH_3NH_3PbI_3$. Three different materials were interfaced to the perovskite by spin coating chlorobenzene solution of

(1) poly(methyl methacrylate), PMMA, (2) phenyl- C_{61} -butyricacid methyl ester, PCBM, or (3) spiro-OMeTAD, that is the hole-transporting material.

We performed time-resolved single photon counting for studying luminescence from exciton generated in the perovskite layer. A 470 nm laser beam with an 86 ps pulse width was impinged on a photovoltaic electrode at 45 MHz repetition rate. Luminescence was dispersed

by a monochromator and detected with a streak camera synchronized with the laser. The photon counts were accumulated as a function of the luminescence wavelength and delay time after photoexcitation. The fluorescence decay curve was obtained by integrating the counts over the wavelength range of from 780 to 820 nm.

[Results and Discussion]

Fig. 1 shows the decay curves for the photoemission from perovskite on c-TiO₂ covered with PCBM (upper) and spiro-OMeTAD (lower). In the case of the perovskite covered with PMMA, laser impinging the

Fig. 1. Time-resolved photoluminescence decay of the perovskite on compact TiO_2 layer interfaced with spiro-OMeTAD and PCBM.

sample gave rise to a rapid increase in the luminescence intensity but it leveled off and no transient decay has been found until at least 5 ns. These results suggest that the excitons generated in perovskite have sufficient diffusion length to reach the interface where they are quenched either by electron- or hole-transporting materials.

[Reference]

[1] J. Burschka et al. Nature 499, 316-319 (2013).

DFTB法と3D-RISMを組み合わせた固液界面付近における 溶媒構造についての理論的研究

¹名大院理,²京大福井セ,³東大院総文 〇中瀧翔太¹,西本佳央²,阿波賀邦夫¹,横川大輔³

Theoretical study of the solvent structure around solid/liquid interface with DFTB and 3D-RISM

Shota Nakataki¹, Yoshio Nishimoto², Kunio Awaga¹, Daisuke Yokogawa³
¹ Graduate School of Chemistry, Nagoya University, Japan
²Fukui Institute for Fundamental Chemistry, Kyoto University, Japan
³ Graduate School of Arts and Science, University of Tokyo, Japan

[Abstract]

Recently, there is a great attraction of the device including organic semiconductor and solvent layer. Awaga group at Nagoya University reported the liquid/solid interface in the device is important to the device performance. However, understanding the interface at atomic level is not achieved. Moreover in our system, the number of organic molecular and solvent molecular is significantly large. Conventional methods, such as molecular dynamics and DFT etc., cannot be applied to our system because of their computational costs. Thus we developed a method to reduce the costs by combining DFTB and 3D-RISM based on statistical mechanics. As a result, we obtained solvent structure around organic layer. Furthermore electronic structure of the organic layer made a charge density deviation from solvent structure.

【序】

近年,有機分子結晶と溶媒が組み合わされたデバイスが注目されており,光電セル やトランジスタなどが研究されている.これらのデバイス性能を向上させるために, 分子レベルでの結晶・溶媒界面の理解は必要不可欠であるが,実験的に溶媒構造・電 子状態を直接測定することは難しく,実現できていないのが現状である.加えて,こ の系に含まれる分子数が非常に多いことから従来の密度汎関数法や分子動力学を用 いた計算は困難である.そこで,密度汎関数強束縛(DFTB)法と統計力学に基づく 3D-RISM を組み合わせることで,この固液界面付近の溶媒層と有機半導体層の原子 レベルにおける振る舞いを明らかにしようと試みた.

【理論・手法】

SCC-DFTB で得られるエネルギーと 3D-RISM で得られる自由エネルギーの和を変 分法によって最小にした結果, 次式のように溶媒和を考慮したハミルトニアンが得ら れた.

 $H_{\mu\nu}^{\text{SCC}-\text{DFTB}} - \frac{b_i}{2} S_{\mu\nu} (V_{\alpha} + V_{\beta})$ ($\mu \in \alpha, \nu \in \beta$). ここで、 $H_{\mu\nu}^{\text{SCC}-\text{DFTB}}$ は2次元周期境界条件のもとで定義された真空状態における SCC-DFTB のハミルトニアン、 $S_{\mu\nu}$ 、 b_i はそれぞれ重なり積分、電子占有数、 V_{α} は溶媒分布によって決定される α サイト上の静電ポテンシャルである.2次元周期境界条件のもとで 3D-RISM を解く必要があるため、2D-Ewald 法を用いて溶質-溶媒相互作用を計算した.

Fig.1 に示すように電極層, 溶媒層, 有機半導体層が並行

Fig. 1 Model of the photocell.

に並ぶ光電セルモデルを考えた. 電極モデルには Pt 原子を, 溶媒はイオン液体として [bmim][Cl]の密度を用いた [mmim][Cl]を, 有機半導体層として, 先行研究で扱った sulflower を用いた[1]. Fig.1 で示したように, Pt 電極付近に sulflower 分子を縦 3 列, 奥 行き方向へ 5 列, 計 15 個を敷き詰めた. ユニットセルのサイズは縦 19.54Å, 奥行き方 向 33.46Å, 横 25.00Å とした. [mmim][Cl]の密度を 1.07g/cm³, 温度を 373.15K として計 算を行った.

【結果・考察】

有機半導体と溶媒を用いたデバイスの性能を改善する ためには、界面付近の溶媒構造とそれによって影響を受け た有機層における電子状態の理解が非常に重要である. そ こで、最初に溶媒が作り出す電荷密度に注目した. 溶媒の 電荷密度p^e(r)において、|p^e|>0.005[e/Å³]を満たす部分を描 画した図を Fig. 2 に示す. 有機層側に正の電荷密度が、そ の外側に負電荷が分布し、電気二重層を形成していること が示された. さらに、sulflower 分子同士によってできた溝 に強い負の電荷密度のピーク見られた. これは、CI site が この溝に強く捕らわれていることに由来する. 一方で、カ チオン分子は比較的サイズが大きいためアニオンほど強 く捕らわれなかったと考えられる.

Fig. 2 Charge density of [mmim][Cl]. The positive and negative density is shown with red and green mesh.

次に、固液界面において、溶媒和を受けた有機層の電子 状態を調べるために、有機分子上のMulliken電荷に注目した.Fig.3 は溶媒効果を受けた有機分子上のMulliken電荷か

ら真空状態における電荷を引いた差分である. 有機層は溶媒層との固液界面に注目す ると, 硫黄原子上の電子が減少する方向へ分極の様子が変化したことが分かる. この 分極の原因を調べるために溶媒が作り出す電位を計算した. この電位の電極平面に対 して並行方向への平均をFig. 4 に示す. 有機層が存在する 13.3Å<Z<20.8Å の領域では, 分子は溶媒界面と逆向きに分極することが示された. よって, 正の電荷密度が固液界 面付近に存在するにも関わらず, Fig. 3 のような分極を示したと考えられる.

Fig. 3 Mulliken charge difference between molecules in [mmim][Cl] and vacuum.

Fig. 4 Voltage from solvent distribution.

【参考文献】

[1] T. Fujimoto, M. M. Matsushita, K. Awaga, J. Phys. Chem. C, 116, 5240-5245(2012).

イオン液体/Pt電極界面における電位応答ヒステリシスの イオン種依存性の研究

¹東工大物質理工,²上海大化学系,³Sogang大 〇岩橋崇¹,周尉²,Kim Doseok³,大内幸雄¹

Ion species dependence of hysteresis behavior at the interfaces of Pt electrode and ionic liquids

oTakashi Iwahashi¹, Wei Zhou², Doseok Kim³, Yukio Ouchi¹

¹ Department of Materials Science and Engineering, Tokyo Institute of Technology, Japan ² Department of Chemistry, Shanghai University, China ³ Sogang University, Korea

[Abstract] Ion adsorption/desorption at electrolyte/electrode interfaces is of fundamental importance in electrochemistry due to its critical role in the electrochemical reactions. The applied potential dependence on the typical electrolyte/electrode interface structure has been well-explained by theoretical models, such as Gouy-Chapman-Stern (GCS) model. On the other hand, room-temperature ionic liquids (RTILs), which are salts in a liquid phase at room temperature, exhibit unique ion adsorption/desorption hysteresis at the electrode interface, which cannot be explained by conventional models including GCS model. Such hysteresis has been considered to be due to large potential barrier in the ion exchange between Stern layer and diffuse layer under high ionic concentration, but the reason is still unclear. In this study, we examined the ion species dependence of the hysteresis in the ion adsorption/desorption behavior at the RTIL/Pt electrode interfaces by infrared-visible sum-frequency generation (IV-SFG) vibrational spectroscopy. We found that the anion adsorption/desorption hysteresis strongly depends on both the anion and cation species, indicating that the ions in the diffusion layer, as well as that at Stern layer, highly contributes to the hysteresis behavior at the electrochemical interfaces of RTILs.

【序】イオン液体とは常温で液体状態を呈する塩であ り、電気化学の分野では溶媒を含まない新奇電解液と して注目を集めている。電気化学反応場として重要な 役割を担う電解液/電極界面におけるイオン吸着・脱 離挙動は Gouy-Chapman-Stern (GCS)モデル (Fig. 1) に代表される古典的な理論モデルを基に検討されて きた。一方、イオン液体/電極界面のイオン吸着・脱 離の電位応答に従来モデルで説明できない特異なヒ ステリシス挙動が実験的に見出された[1,2]。これは高 イオン濃度の拡散層と電極表面一層目 (Stern 層)と の間でのイオン交換にポテンシャル障壁が存在する

Fig. 1. Typical GCS model structure.

ことに由来すると予測されているが[2]、ヒステリシス挙動に関する実験的・理論的検 証の不足から、実際の要因は未だ明らかでない。そこで、本研究では表面・界面敏感 な振動分光法である赤外-可視和周波発生振動分光法(IV-SFG)を用いてイオン液体/ 電極界面構造における電位応答のイオン種依存性を評価し、電極表面一層目と拡散層 に存在するイオン種とヒステリシスとの相関性を検討することを目的とした。 【赤外-可視和周波発生振動分光法】IV-SFG は二次の非線形光学効果を用いた振動分 光法であり、可視光(ω_{ris})と赤外光(ω_{r})を入射したときに発生する和周波光($\omega_{sf} = \omega_{vis} + \omega_{rr}$, Fig. 2)を観測する。和周波光は反転対称性を持たない系からのみ発生する が、液体のような等方性媒質では反転対称中心を欠く表面・界面でのみ発生し、従っ て表面・界面選択性の高い測定手法とされる。発生する和周波光の強度 $I_{sf}(\omega_{rr})$ は非共 鳴項 λ_{NR} と共鳴項 λ_{R} から次式で表される。

$$I_{\rm sf}(\omega_{\rm ir}) \propto \left|\chi_{\rm NR} + \chi_{\rm R}\right|^2 = \left|\chi_{\rm NR} + \sum_{q} \frac{A_q}{\omega_{\rm ir} - \omega_q + i\Gamma_q}\right|^2$$

ここで、*Aq、ωq*および*Γq*はそれぞれ *q*番目の基準振動モードの振幅強度、共鳴周波数および減衰係数である。得られた SFG スペクトルを上式でフィッティングすることで、表面・ 界面の分子配向や数密度を検討できる。

【実験】電解液とするイオン液体(Fig. 3)のカチオンには 1-butyl-3-methylimidazolium ([C4mim]⁺; Fig. 3a) と 1-butyl-1-methylpyrrolidinium ([P14]⁺; Fig. 3b)、アニオンには bis(trifluoro- methanesulfonyl)amide ([TFSA]⁻; Fig. 3c)を用い た。SFG 測定用電気化学セルは三電極系にて構成され、作用 極・対極・参照電極にはそれぞれ多結晶 Pt 円板電極・Pt 線 電極・Ag|Ag[OTf]参照電極を用いた。電気化学測定及び SFG 測定時の電位制御には電気化学測定システム HZ-5000(北斗 電工)を用いた。SFG 測定は各イオン液体の電気化学窓内に て電位を正から負に掃引して 0.5V 毎に測定後、負から正に 掃引して 0.5V 毎に測定した。

Fig. 2. Energy diagram of SFG.

Fig. 3. (a) [C₄mim]⁺, (a) [P14]⁺ and (c) [TFSA]⁻ structures.

【結果・考察】Fig. 4 に[C4mim][TFSA]及び[P14][TFSA]の Pt 電極界面における[TFSA] アニオンの CF・SO 伸縮振動モード領域の SFG スペクトルの電位依存性を示す。+1.0V 印可時は双方ともアニオン由来の SF シグナルが明確に観測されており、Pt 電極表面 にアニオンが吸着していることを示唆する。一方、電位を負に掃引すると [C4mim][TFSA]はアニオン由来のシグナルが-2.0V でほぼ消失したが、[P14][TFSA]は -1.0V でほぼ消失した。これは電極表面に吸着するアニオン種が同じであるにもかか わらず、その脱離挙動が拡散層に存在するカチオン種に影響されることを示しており、

すなわち電極表面一層目のイオン吸 着・脱離挙動が拡散層のイオン種にも 依存することを示唆する。これは一層 目と拡散層とのイオン交換のポテンシ ャル障壁が一層目・拡散層双方のイオ ン種に依存することを意味する。当日 は他のカチオン・アニオンの組み合わ せについても詳細に議論する。

【参考文献】

[1] W. Zhou et al. Electrochem. Commun. 12, 672 (2010).

[2] K. Motobayashi et al. J. Phys. Chem. Lett. 4, 3110 (2013).

4P057

自由エネルギー計算による親水性イオンの界面間輸送プロセスにおける 水和効果の究明

¹東北大院・理,²京大ESICB ○Wang Lingjian¹, 吉川 信明¹⁰, 森田 明弘^{1,2}

Unveiling the role of hydration during the interfacial transport process of hydrophilic ion using free energy calculation

○Lingjian Wang¹, Nobuaki Kikkawa^{1¢}, Akihiro Morita^{1,2}
¹ Graduate School of Science, Tohoku University, Japan
² ESICB, Kyoto University, Japan

[Abstract] In this study, we calculated the multidimensional free energy surfaces of ion transport through liquid-liquid interfaces. The calculation revealed the hydration status of the interfacial ions and evaporation kinetics of hydration along the diffusion in the oil phase. The role of evaporation kinetics in relation to the efficiency of the interfacial transport is discussed in details, and thus the catalytic effect of water during the interfacial transport process of hydrophilic ions is elucidated.

(Introduction) Recent experimental measurement of interfacial kinetics using micropipette apparatus revealed that even a trace amount of water dissolved in the hydrophobic phase brings about remarkable facilitation for the ion transfer from the water phase to the hydrophobic one,1 but the mechanism of this phenomenon is still unsolved. In order to understand the mechanism of facilitation of ion transfer process, we use molecular dynamics (MD) to look into microscopic details of the ion transport process near the interface.

[Method] The transport process of hydrophilic ions through water-oil interface is accompanied with characteristic transient structural fluctuation of water molecules near the interface, called "water finger". The interfacial transport is properly described with two coordinates: the distance between ion and the interface z, and the water finger coordinate w to account for the status of "water finger".² We calculated the 2D free energy surface along z and w using the Hamiltonian replica exchange molecular dynamics (HREMD).

The MD simulation was carried out with Cl⁻ ions through the interface between water and 1,2-dichloromethane. The distribution of hydrated ion clusters with different hydration number immediately after the break of "water finger" is retrieved by analyzing the trajectory of HREMD simulations. The free energy profiles with restricting the hydration number to a specific value in the exit channel are also calculated.

[◊] Present affiliation: Toyota Central R&D Labs., inc.

[Result & Discussion] The calculated 1D free energy curves along z under different conditions are shown in Fig 1. Each curve in the figure has a break point in the oil region $(z=10\sim30 \text{ Å})$ where the water finger is broken. The n=0 and n=1 curves in Fig. 1 show the free energy curves with restricting the exit channel to a specific number of hydration n, indicating that the water finger tends to last longer when the break generates a naked ion (n=0) or a small cluster (n=1). Figure 2 shows the distribution of clusters with different hydration number immediately after the break of "water finger". The nascent clusters tend to have more hydrated water than that in the equilibrated bulk oil.³ The subsequent kinetics of water evaporation/adsorption should take place after the break of water finger. The comprehensive picture of the kinetics of hydrated ion clusters is proposed in the presentation.

Fig 1. 1D free energy curves under different conditions. The green line is the ordinary curve. The red line represents the situation when "water finger" keeps being formed.

Fig 2. The distribution of clusters with different hydration number immediately after the break of "water finger".

[Acknowledgment]

This work was supported by the Grants-in-Aids (JP26288003, 25104003). The computation was carried out using the Research Center for Computational Science, Okazaki.

[References]

1. P. Sun, F. O. Laforge, M. V. Mirkin, Role of Trace Amounts of Water in Transfers of Hydrophilic and Hydrophobic Ions to Low-Polarity Organic Solvents. *J. Am. Chem. Soc.* **129**, 12410–12411 (2007).

2. N. Kikkawa, L. Wang, A. Morita, Microscopic Barrier Mechanism of Ion Transport through Liquid–Liquid Interface. *J. Am. Chem. Soc.* **137**, 8022–8025 (2015).

3. L. Wang, N. Kikkawa, A. Morita, Hydrated Ion Clusters in Hydrophobic Liquid: Equilibrium Distribution, Kinetics, and Implications. *J. Phys. Chem. B* **122**, 3562-3571 (2018)

有機半導体界面での電荷分離過程に関する理論的研究

¹東洋大理工,²神戸大院科学技術イノベーション 〇田代基慶¹,島崎智実²

Theoretical study on charge separation process in organic semiconductors

oMotomichi TASHIRO¹, Tomomi SHIMAZAKI²

¹ Department of Applied Chemistry, Toyo University, Japan ² Graduate School of Science, Technology and Innovation, Kobe University, Japan

(Abstract) A bulk-heterojunction structure is often employed to develop high-performance organic photocells, in which the donor and acceptor regions are complexly intertwined. In such situations, the mesoscopic-scale islands and peninsulas that compose the donor materials may be formed in the acceptor region. Alternatively, the donor region may extend deeply into the acceptor region. This yields mesoscopic-size impurities in the charge separation (exciton dissociation) process of organic photocells and prevents the dissociation of excitons (electron–hole pairs). In this work, we first discuss the mesoscopic-scale impurity effect on the charge separation process in PCBM acceptor models by considering the hot CT state and dimensional effects. Then, we also inspect vibrational energy relaxation in bulk PCBM and related materials in acceptor regions, which may have importance in understanding vibrational energy dissipation in our model.

【序】

多くの有機薄膜型太陽電池ではπ共役高分子等から成るドナー層と PCBM 等から なるアクセプター層がバルクヘテロジャンクションと呼ばれる、互いに絡み合った構 造を取って接している。この構造では、アクセプター領域内にメゾスケールのドナー 領域が島状、半島状に形成、貫入しているが、そのような構造は電荷分離過程への障 害物(Impurity)として働く可能性がある。

本研究ではまず PCBM から成るアクセプター層に着目し、電子を通さない障害物 (Impurity)が存在する場合のエキシトン分離確率への影響を調べた。また、計算に利用 するモデルに関連し、アクセプター分子の振動エネルギー緩和過程についても調査を 行った。

【手法】

- ・ PCBMから成るアクセプター層での電子拡散についてはShimazaki and Nakajima (参考文献 1)らによるモデルを利用した。このモデルでは電子が各 PCBM 間を特定の確率でホッピングして移動する。また各 PCBM は「hot」「relaxed」の2 状態を取ることができ、「hot」状態の電子はある確率で「relaxed」状態に緩和する。ドナー・アクセプター界面で正孔と分離した電子が界面より十分遠くに到達できればエキシトンが解離したと見なし、アクセプター領域に障害物を置いてそのエキシトン解離確率への影響を調べた(図 1)。
- ・アクセプター層における分子の振動緩和については、層内の単一の PCBM 分子に振動エネルギーを与え、周囲の分子へのエネルギー伝達の様子を OPLS 力場を利用した分子動力学計算を用いて調べた。

【結果】

アクセプター層に障害物がある場合の電子拡散とエキシトン解離確率を図2に示す。図では横軸に「hot」「relaxed」状態のエネルギー差を示すバンドオフセット、縦軸にエキシトン解離確率を示している。計算結果から不純物が界面近くにある場合は電荷分離が阻害されエキシトン解離確率が低下することが分かる。また、幅100Åよりも小さい不純物については電荷分離確率への影響は小さいことが確認された。

・アクセプター層での分子の振動緩和に関する計算結果を図3と図4に示す。図3では初期に振動を与えられた分子から時間とともに周囲の分子に運動エネルギーが伝わって行く様子が示されていて、緩和時間が20ピコ秒程度であることが分かる。図4ではC₆₀、PCBM、bis-PCBMそれぞれについて同様の計算を行い結果を比較している。この結果から付加基が増える程緩和時間が短くなることが示唆される。

【参考文献】

- [1] Shimazaki, Nakajima, Phys. Chem. Chem. Phys. 17 12538 (2015)
- [2] Shimazaki, Tashiro, Nakajima, Phys. Chem. Chem. Phys. 20 14846 (2018).

銀ナノワイヤの表面処理と表面増強ラマン散乱に与える影響

¹北大院情報,²北大電子研,³KU Leuven o堀菜月¹,平井健二^{1,2},猪瀬朋子^{1,2}, 雲林院宏^{1,2,3}

Surface treatment of Ag nanowire for surface enhanced Raman scattering

•Natsuki Hori¹, Kenji Hirai^{1,2}, Tomoko Imose^{1,2}, Hiroshi Ujii^{1,2}

¹ Graduate School of Information Science and Technology, Hokkaido University, Japan ² Research Institute for Electronic Science, Hokkaido University, Japan

[Abstract]

Surface enhanced Raman scattering (SERS) is a promising way to unveil the behaviors of drug molecules in a living cell. We recently developed the method to insert plasmonic Ag nanowire (AgNW) probe in the cell to obtain SERS signal. One way to increase the sensitivity of AgNW as an endoscopic probe is to fabricate AgNW with rough surface. Here, we show the method for etching of AgNW to form the rough surface. AgNWs are placed in ethylene glycol solution of Ag(NO₃) and stirred at 80 °C. As reaction time passes, the faceted pits are generated on the surface, resulting in the formation of AgNW with rough surface (etched AgNW). SERS signal from etched AgNW is investigated to understand the effect of surface roughness on SERS.

【序】

ドラックデリバリーシステムの開発において、単一細胞レベルでの細胞内の分子情報を得ることは、生体現象及び薬分子の代謝経路の解明に寄与し、薬剤の安全性を担保するために重要である。当研究室では貴金属ナノワイヤを生きた細胞内に差し込み、 ナノワイヤ先端に局在するプラズモンを利用して細胞内部の任意位置での表面増強 ラマン散乱(SERS)を検出する手法を開発した。しかし、この技術ではナノワイヤ の先端近傍の分子しか検出できず、細胞内全体の分子の情報を得ることはできない。 そこで、SERS 特性の向上を目指し、銀ナノワイヤ (AgNW) に表面処理を施し凹凸を 形成する方法を検討した。

【方法】

1. AgNW の合成^[1]

ポリビニルピロリドン (PVP, Mw ~33,000) 0.133 g, エチレングリコール (EG) 9.66 mL をガラス製バイアル瓶に加え, 160 ℃に加熱した。撹拌子の回転数 600 rpm で 1 時間攪拌した。次に4 mM の塩化銅 (II) の EG 溶液を 80 µL 加えて 10 分間攪拌した。 攪拌速度を 1000~1200 rpm に上げた後、1.2 mM の硝酸銀 (I)の EG 溶液を 5 mL を 1 分ごとに 100 µL の AgNO₃ 溶液を一滴ずつ加えた。AgNO₃ 溶液を加えた後、攪拌速度 を 600 rpm に落とし 1 時間攪拌した。AgNW 溶液の温度が室温まで下がったことを確 認し、エタノールで洗浄、置換して保存した。

2. AgNW の表面処理^[2]

AgNO₃の EG 溶液 (94 mM) に AgNW を加えた後、80℃で 0~90 分加熱した。 3.AgNW の SERS 測定

AgNW、表面処理した AgNW をそれぞれ 0.2mM 4-mercaptobenzoicacid (4-mba)のエ タノール溶液に浸して一晩攪拌し、ラマン顕微鏡で SERS を測定した。

【結果・考察】

Fig.1. Scanning electron microscope images of Ag NWs after etching. Etching time was varied (a) 0min, (b) 5min, (c) 30min, (d) 60min, (e) 90min.

イヤがエッチングされ、刻みの入った構造体が形成さ れた(Fig. 1c-e)。ポリオール合成で作られた AgNW は 断面が五連双晶構造のワイヤ状の形状をしており、側 面の{100}面は PVP によってキャッピングされること で安定化されている (Fig.2)。この{100}面がエッチン グされて、{111}面が露出することによって、AgNW の 側面に刻みが入ると考えられる。刻みの入った凹部分 と側面の角度は 120 度であり、{100}面と{111}面の二 面角と一致する。

この表面処理された銀ナノワイヤと処理前の銀ナノ ワイヤの SERS 測定を行った (Fig.3a)。処理時間 90 分 のナノワイヤでは、EF (enhancement factor) が 5×10^4 と算出された。未処理のナノワイヤでは微弱なラマン **Fig.2.** Schematic illustration of AgNWs: the views from (a) long axis and (b) short axis.

シグナルしか観測されな いため、表面処理によって SERS特性が向上している ことが明らかとなった。また、ラマンシグナルの強定 によって、マッピングを行ったところ (Fig 3b)、処理 後のワイヤ全体から SERS シグナルが得られている ことが分かった。このナノ ワイヤを細胞内全体の局在 プラズモンを計測するこ とが可能になると推測 される。

Fig.3. (a) SERS spectrum of AgNW before and after etching. The red arrow indicates the peak used for intensity mapping. (b) Mapping of Raman intensity of etched Ag nanowires.

【参考文献】

[1] Y. Sun, B. Mayers, T. Herricks, Y. Xia. Nano Lett. 2003, 3, 955-960.

[2] R. L. S. Tan et al. J. Am. Chem. Soc. 2016, 138, 10770-10773.

フラボノイド化合物を結合させた球状金ナノ粒子の合成と 分散・凝集状態の制御

愛知教育大

○日野 和之, 角田 恵理, 西尾 ふみね, 藤田 あおい, 柴田 るり子

Preparation of gold nanoparticles coated with a flavonoid compound and dispersibility controls of them

 Kazuyuki Hino, Eri Tsunoda, Fumine Nishio, Aoi Fujita, Ruriko Shibata Department of Chemistry, Aichi University of Education, Japan

[Abstract] We have prepared gold nanoparticles (diameter of 2, 5, 20 nm) coated with a flavonoid compound (alkyl chain length of C3~C10). Fluorescence spectra of them show stronger quenching with larger particle diameter and shorter chain length. On the other hand, under pH 3, 7, and 11, absorption spectra of them show a red shift of ~100 nm because of aggregation. We confirmed the reversibility of dispersion and aggregation by changing the pH.

【序】直径が約3 nm以上の貴金属ナノ粒子は,自由電子の表面プラズモン振動に由 来する特徴的な吸収を紫外光から近赤外光の領域に示す.金ナノ粒子の場合,粒子サ イズが5 nm では吸収極大が520 nm,サイズが30 nm では吸収極大が560 nm である. この表面プラズモンによる電場は,近傍にある蛍光性分子と相互作用し,その発光効 率を増大させる性質をもつ[1,2].しかし,より一般的には蛍光性分子の励起エネルギ ーが金属ナノ粒子に移動して,消光現象が多く観測される.

一方で,金ナノ粒子表面へ外部刺激応答性もつ配位子を付加させたときに,配位子の性質を保持し続けることが報告されている[3].中でも,pH応答性の振る舞いは, 複合体の周囲環境を探るセンサーや,薬効成分を患部をねらって受け渡すドラッグデ リバリーへの応用が期待されている.

我々は、蛍光発色団としてフラボノイド化合物を選択し、金ナノ粒子と結合させる ことを計画した.フラボノイド化合物にアルキル鎖を導入し、末端をチオールとする ことで金ナノ粒子に結合させる.アルキル鎖長を変えることで、金ナノ粒子と蛍光発 色団の間の距離を制御できる.そこで、サイズが数 nm から数 10 nm の金ナノ粒子を 調製することで、粒子サイズとスペーサー距離の 2 つのパラメーターを組み合わせて 蛍光挙動を調べることができる.一方で、今回対象とするフラボノイド化合物にはジ エチルアミノ基が結合しており、pH を変化させることでプロトンの脱着が期待され る.このことにより、粒子表面のもつ電荷が影響を受けて粒子の分散・凝集状態がス イッチできる。pH 依存性を詳細に明らかにするために、

複数の緩衝溶液を用いて吸収スペクトルを測定する.

【実験】4'-ジエチルアミノ-3-ヒドロキシフラボンのヒ ドロキシ基とジブロモアルカン(炭素鎖長 C3~C10) を縮合させ、チオアセチル化し、最後に脱保護してチ オールとした(図 1).金ナノ粒子の調製は、3 つの方 法で行った.i) 塩化金酸とチオールを DMF に溶解した

Fig. 1. Molecular Structure of Thiol.

溶液をヒドリド還元して粒径が2nmのフラボノイド結合ナノ粒子を得た.ii) 塩化金酸とドデシル硫酸ナトリウム (SDS) を溶解した水溶液をヒドリド還元して粒径が5nmのナノ粒子を得た.iii) 塩化金酸水溶液にクエン酸を加えて,加熱還元して粒径が20~30nmのナノ粒子を得た.iii) 塩化金酸水溶液にクエン酸を加えて,加熱還元して粒径が20~30nmのナノ粒子を得た.iii)とiii)の場合には,その後チオールを溶解したアセトニトリル溶液と作用させることで,配位子置換し,それぞれフラボノイド結合ナノ粒子を作製した.得られた複合体ナノ粒子をDMFに溶解して吸収および蛍光スペクトルを観測した。このとき,蛍光強度を比較するためにフラボノイド由来の吸収の吸光度をそろえた.一方,分散・凝集状態の調査については,複合体ナノ粒子をエタノールに溶解して,そこに緩衝溶液を加えて吸収スペクトルの変化を調べることで行った.

【結果・考察】複合体ナノ粒子の溶媒への溶解度は、 粒子サイズに依存した. すべてのサイズの粒子は DMFに溶解したため, DMF 溶液で蛍光測定を行っ た. 図2に粒径2nm, 5nm, 20nm の粒子にC8 チ オールを結合した複合体ナノ粒子の380nm 励起の 蛍光スペクトルを示す. 蛍光極大は480nm に現れ た. C8 チオール単体に対して, 蛍光強度は粒径が 2nm, 5nm, 20nm の順に大きく減少することが分 かった. また, 粒径2nm の粒子にそれぞれ C5,

Fig. 2. Fluorescence spectra of the C8 thiol-capped gold nanoparticles.

C8, C10 チオールを結合した複合体ナノ粒子の蛍光スペクトルから,蛍光強度はアル キル鎖長が C10, C8, C5 の順に大きく減少することが分かった.このことから,粒 子サイズがより大きくなるほど,また,スペーサー距離がより小さいほど,蛍光強度 が大きく減少する.これは,粒子と蛍光発色団がより接近するほど励起エネルギー移 動や重原子効果が大きくなるためと考えられるが,柔軟である炭素鎖の折れ曲がり, 凝集の可能性も考えられる.

一方, 複合体ナノ粒子の DMF 溶液に緩衝溶液 を少量加えると粒子の沈殿や塩の析出が見られ た. それに対して, エタノール溶液では緩衝溶 液を加えても十分に溶解したままであった. そ こで, 今回は粒径 20 nm 以上の粒子について pH による分散・凝集状態の調査を行うことにした. 図 3 に粒径 20~30 nm の複合体粒子のエタノー ル溶液の吸収スペクトルと 5 種類の緩衝溶液を 加えた場合の吸収スペクトルを示す. エタノー ル溶液の吸収極大け約 580 nm であるのに対して

Fig. 3. Absorption spectra of the C3 thiol-capped gold nanoparticles.

ル溶液の吸収極大は約 580 nm であるのに対して, pH3, pH7, pH11 の溶液の場合に は,吸収極大が約 680 nm まで長波長シフトした. これらの溶液を TEM 観察すると, 粒子同士が凝集していることが確認できた. また,凝集状態に塩酸や水酸化ナトリウ ム水溶液を加えることで吸収ピークが短波長シフトして,再び分散状態に変化するこ とを確認できた. この分散・凝集状態の変化の起源は,フラボノイド分子のアミノ基 やカルボニル基にプロトンが脱着することで金ナノ粒子表面の電荷のバランスが崩 れて,粒子間に引力が働いて凝集すると考えている。

【参考文献】

P. Reineck *et al. ACS Nano* 7, 6636 (2013).
S. Damm *et al. Appl. Phys. Lett.* 106, 183109-1 (2015).
M. D'Souza-Mathew *et al. J. Col. Int. Sci.* 407, 187 (2013).