配位子保護金属クラスターのインソース衝突誘起解離

¹東大院理,²京大ESICB

○冨原良平¹, 高野慎二郎¹, 山添誠司^{1,2}, 小安喜一郎^{1,2}, 佃達哉^{1,2}

In-source collision-induced dissociation of ligand-protected metal clusters

○Ryohei Tomihara¹, Shinjiro Takano¹, Seiji Yamazoe^{1,2}, Kiichirou Koyasu^{1,2},

Tatsuya Tsukuda^{1,2}

¹ School of Science, The University of Tokyo, Japan ² ESICB, Kyoto University, Japan

[Abstract]

Phosphines and thiolates on the Au clusters form a variety of interfacial motifs depending on the size and geometric structures of metal cores. In this study, we measured collision-induced dissociation mass spectra of a series of ligand-protected Au clusters $Au_{11}(PPh_3)\otimes Cl_2^+$, $Au_{25}(SR)_{18}^-$ (SR = SC₃H₇, SC₆H₁₃, SC₈H₁₇, SC₁₀H₂₁, and SC₁₂H₂₅), and Au₂₃(SC₆H₁₁)₁₆⁻ to gain insights into their structures and stability. Fragmentation patterns are discussed on the basis of the geometric structures of the clusters determined by single crystal X-ray diffraction.

【序】

配位子保護金クラスターは、配位子と金コアのサイズに 応じて多様な構造を持つ。ホスフィン配位子が金原子に対 して直接結合するのに対して、チオラート配位子の場合、 -SR-(Au-SR-)_nオリゴマー構造(staple)が形成され2座配 位子として結合する。コアの形状によって形成される staple 構造は異なり、Au₂₅では 6 つの Au₂SR₃、Au₂₃では 2 つの Au₃SR₄と2つのAuSR₂からなることが知られている(Fig. 1)。 本研究では、幾何構造が単結晶 X 線構造解析によって明ら かにされている配位子保護金クラスターAu₁₁(PPh₃)₈Cl₂⁺、 Au₂₅(SR)₁₈⁻(SR = SC₃H₇, SC₆H₁₃, SC₈H₁₇, SC₁₀H₂₁, SC₁₂H₂₅) および Au₂₃(SC₆H₁₁)₁₆⁻の衝突誘起解離質量(CID-MS) スペ クトル^[1,2]を測定し、保護基やコアの構造の違いとその安定 性について考察した。

【実験方法】 既報^[3]を参考に合成した金クラスターAu₁₁(PPh₃)₈Cl₂⁺、

Au₂₅(SR)₁₈⁻ (SR = SC₃H₇, SC₆H₁₃, SC₈H₁₇, SC₁₀H₂₁, SC₁₂H₂₅) および Au₂₃(SC₆H₁₁)₁₆⁻ を試料として用いた。本研究では、既存 のエレクトロスプレーイオン化飛行時間 型質量分析装置 (ESI-TOF-MS) ^[4]を改良 し、イオンを真空に導入する差動排気部 で in-source CID を起こさせた (Fig. 2)。 金クラスターを含む (~2 mg/mL) トルエ ン/アセトニトリル または ジクロロメタ ンをシリンジに充填し、高電圧 (+/-2.9

Fig. 1. Structures of Au₂₅ and Au₂₃. The brown and green balls represent Au and S atoms, respectively. The organic residues are omitted for clarity.

Fig. 2. Schematic image of in-source CID apparatus

kV)を印加したニードルから、接地したキャピラリーに向けて一定速度(1.5 μ L/min) で押し出すことで、ESI法によってイオン化した。キャピラリーを~120 °Cに通電加熱 することで、脱溶媒を促進した。キャピラリーを通過した金クラスターイオンは、イ オン光学系を経由して、飛行時間型質量分析器に導入した。orifice と skimmer#1 間の 電圧差(ΔV_1)や skimmer#1と skimmer#2の間の電圧差(ΔV_2)を調整することで、 金クラスターと残留ガスの実効的な衝突エネルギーを変えながら、CID 質量スペクト ルを測定した。

【結果・考察】

まず、 ΔV_1 をイオンが減速される条件(正イオンの場合 $\Delta V_1 < 0$ 、負イオンの場合 $\Delta V_1 > 0$)に設定して各クラスターの質量スペクトルを測定したところ、単一組成の親イオンのみが観測された。次に、イオンが加速されるような ΔV_1 , ΔV_2 の条件で質量スペクトルを測定すると、下記に示すように各クラスターからの特徴的な解離が観測された。

Au₁₁(PPh₃)₈Cl₂+の場合: PPh₃とAuClの脱離が観測され、 $\Delta V_1, \Delta V_2$ の増加とともにより 多くのPPh₃とAuClが脱離する様子が観測された。観測されたフラグメントイオンの 金コアの形式的な価電子数は8であり、生成物の電子的な安定性が解離過程を支配し ていると言える。

Au₂₅(SR)₁₈⁻の場合: アルキル鎖 長および ΔV_1 , ΔV_2 に応じて解 離パターンが変化した。SR = SC₁₂H₂₅ の場合には、Au₄SR₄ の脱離のみが観測された (Fig. 3)。Au₄SR₄の脱離は、フラグ メントイオン Au₂₁(SR)₁₄⁻の金 コアの形式的な価電子数が 8 であることに加え、Au₄SR₄が 環状の安定構造を持つことに よるものと考えられる。SR = SC₈H₁₇, SC₁₀H₂₁ の場合、 ΔV_2 の増加とともにさらに有機鎖 R₂が脱離する様子が観測され た (Fig. 3)。炭素鎖が SR =

Fig. 3. Typical CID-MS spectra of $Au_{25}(SR)_{18}^{-}$ ($\Delta V_1 = 0.40 \text{ kV}$, $\Delta V_2 = 300 \text{ V}$). Horizontal axis is the difference from the mass of $Au_{25}(SR)_{18}^{-}$. Circles, triangles, and squares indicate the $Au_{25}SR_{18}^{-}$, $Au_{21}SR_{14}^{-}$, and $Au_{17}SR_{10}^{-}$, respectively.

SC₃H₇, SC₆H₁₃まで短くなると、二つ目の Au₄SR₄の脱離が観測された(Fig. 3)。以上のように、アルキル鎖が長い方が解離に対して安定であるという結果は、アルキル鎖間のファンデルワールス相互作用^[5]が鎖長とともに強くなったためであると考えられる。

Au₂₃(SC₆H₁₁)₁₆の場合:1個の Au₄SR₄ とさらに Au や SR の脱離が観測された。この解 離パターンの違いは初期構造の違いを反映しているものと考えられる(Fig. 1)。

【参考文献】

[1] G. E. Johnson et al. Phys. Chem. Chem. Phys. 17, 14636 (2015).

[2] (a) D. M. Black et al. J. Phys. Chem. A 118, 10679 (2014). (b) L. Angel et al. ACS Nano 4, 4691 (2010).

[3] (a) L. C. Mckenzie *et al. J. Am. Chem. Soc.* **136**, 13426 (2014). (b) M. A. Tofanelli *et al. Chem. Sci.* **7**, 1882 (2016). (c) A. Das *et al. J. Am. Chem. Soc.* **135**, 18264 (2013).

[4] Y. Negishi, K. Nobusada, and T. Tsukuda, J. Am. Chem. Soc. 127, 5261 (2005).

[5] S. Antonello et al. ACS Nano 8, 2788 (2014).