SPring-8における気相分子の硬X線電子分光実験 ¹兵庫県立大、²理研、³京都大 下條 竜夫^{1,2}、大浦 正樹²、永谷 清信^{2,3}、玉作 賢治²

Hard x-ray photoelectron spectroscopy experiments of gas-phase molecules at Spring-8

•Tatsuo Gejo^{1,2}, Masaki Oura², Kiyonobu Nagaya^{2,3}, Kenji Tamasaku²
¹Graduate school of material Science, University of hyogo, Japan
²Riken, Japan
³Department of Physics, Kyoto University, Japan

【 Abstract **】** The photoionization process of the Iodomethane and tri-fluoromethane molecules following core-shell photoexcitation around the Iodine K edge has been studied by using high resolution photoelectron and Auger electron spectroscopic technique. *LMM* Auger spectra show that, below K edge, L vacancies are produced only by direct ionization, while above the K edge some of these vacancies are mainly produced by K-L emission following 1s photoionization. Due to the dipole selection rule for x-ray emission, the dominant role of the K L relaxation process is rather directly observed.

【序】深い内殻、いわゆる deep core にホールを持った光励起分子はきわめて不安定 であり、その寿命は1 fs 程度かそれ以下である。この内殻励起状態は、ケイ光放出、 オージェカスケード(多段階のオージェ崩壊)などをへて、最終的に多価のフラグメ ントイオンへと崩壊していく。

硬X線光電子分光、いわゆる HAXPES は、平均自由行程の長い高エネルギーの光電 子を利用するために開発された実験手法である。表面の影響を最低限に押さえ、固体 内部の電子状態が測定できるため、各放射光施設で広く利用されている。通常、気相 分子に用いられることはなかったが、上記の深い内殻を励起したときのダイナミクス 測定のために、様々な実験が行われるようになってきた。

最近、我々は、SPring-8の硬X線を利用し、キセノンの深い内殻を励起した時の硬 X線光電子分光を行った[1]。具体的には、35.5 keVの硬X線を利用し、キセノン の1*s*光電子スペクトルおよびオージェ電子スペクトル測定を行った。その結果、1*s* 内殻空孔の寿命は約68 as であり、また1*s*電子イオン化極限(K端)以上のエネル ギーで励起した場合、LMM オージェスペクトルはL₂₃MM オージェ過程が支配的になる ことなどがわかった。

さて、分子の場合、このようなオージェカスケードの最中に分子の解離が起こる。 つまり、オージェカスケード中に、分子のオージェスペクトルではなく、解離したフ ラグメントのオージェスペクトルがあらわれることになる。また、解離の最中にオー ジェ過程が起こる場合は、スペクトルのピークシフトやブロードニングも発生する [2]。我々は、分子の深い内殻励起領域での振る舞いを調べるため、ヨウ化メチル (CH3I)とトリフルオロヨードメタン(CF3I)を用い、ヨウ素の 1*s* 光電子とオージ ェスペクトルを測定したので報告する。 【方法】実験は SPring-8、BL19SU で行った。ヨウ化メチルとトリフルオロヨードメ タンをガスセル内に導入し、高分解能光電子分光装置を用い光電子スペクトルを測定 した。入射光の偏光方向は、測定装置に対し平行にした。ヨウ素の直接イオン化エネ ルギーである 35.5 keV 付近に光励起エネルギーを設定し、1s電子イオン化極限の上 と下のエネルギー領域で測定を行った。

【結果・考察】図1に35.46 keV の励起エネルギーで測定したヨウ 化メチルの1s光電子スペクトルを 示す。幅は12.5 eV 程度であり、複 数の振動バンドとシェイクアップ 状態が含まれていると考えられる。

図2には、この励起エネルギー付 近で測定したヨウ素の LMM オージ ェスペクトルを示す。上が 1*s* 電子 イオン化極限以下の励起エネルギ −での測定、下が 1*s* 電子イオン化 極限より上のエネルギーでの測定 である。赤い矢印で示したバンドが しきい値より上のエネルギーの励 起では消失していることがわかる。 このことは、原子番号の近いキセノ ンのスペクトルの比較から、K 端よ り上の励起ではL₂₀MM オージェスペ クトルが支配的であり、L1MM オー ジェスペクトルが相対的に弱いた め観測されていないことを示す。こ れは、1s 空孔により 2p 1sケイ光 放出が起こり、その後にLMM オージ ェ過程が起こったためと考えられ る。

【参考文献】

 M. N. Piancastelli, K. Jankala, L. Journel, T. Gejo, Y. Kohmura, M. Huttula, M. Simon, and M. Oura,

Physical Review A 95, 061402(R) (2017)

[2] T. Gejo, M. Oura, T. Tokushima, Y. Horikawa, H. Arai, M. Oura and N. Kosugi, *J. Chem. Phys.* 147, 044310 (2017).

図 1 .35.46 keV で励起した時のヨウ化メチルの 1s 光電子 スペクトル

図2.35.46 keV で励起した時のヨウ化メチルの LMM オ ージェ電子スペクトル。赤い矢印で示したバンドはしきい 値以下の励起でのみ観測されるため、L₁MM オージェに起 因するバンドと考えられる。