新規π縮小型TTP系ドナーの合成と性質

¹愛媛大院理工,²愛媛大RU:PGeS,³愛媛大RU:OSC, ⁴愛媛大RU:超高圧材料科学研究ユニット,⁵兵庫県立大院・物質理 〇白旗 崇^{1,2,3}, モハマド サフワン ビン アリアス¹, 木下 直哉¹, 古田 圭介¹, 山本 貴^{1,3,4}, 内藤 俊雄^{1,3}, 山田 順一⁵, 御崎 洋二^{1,2,3}

Synthesis of New TTP Derivatives with Reduced π-System: Structures and Properties of Their Cation Radical Salts

°Takashi Shirahata^{1,2,3}, Mohamad Safuwan bin Alias¹, Naoya Kinoshita¹, Keisuke Furuta¹,

Takashi Yamamoto^{1,3,4}, Toshio Naito^{1,3}, Jun-ichi Yamada⁵, Yohji Misaki^{1,2,3}

¹ Graduate School of Science and Engineering, Ehime University, Japan

² Research Unit for Power Generation and Storage Materials, Ehime University, Japan

³ Research Unit for Development of Organic Superconductors, Ehime University, Japan

⁴ Research Unit for Materials Science under Ultra-high Pressure, Ehime University, Japan ⁵ Graduate School of Material Science, University of Hyogo, Japan

[Abstract] The new donors with reduced π -system DMDTDH-TTP and DMDTDA-TTP were successfully synthesized. (DMDTDA-TTP)₂X (X = PF₆, AsF₆, and SbF₆) crystallize in triclinic space group $P\overline{1}$. DMDTDA-TTP molecules form head-to-tail dimer. The β -type molecular array is constructed on the *ab* plane. A tight binding band calculation demonstrated that the energy band branches are divided by a mid-gap due to strong dimerization. The room temperature conductivities are 7.6 S cm⁻¹ for the PF₆ salt, 2.2 S cm⁻¹ for the AsF₆ salt, and 4.0 S cm⁻¹ for the SbF₆ salt. The salts showed temperature independent resistivity down to around 150 K and the resistivity gradually increases from 150 to 10 K with small activation energy.

【序】2つのTTFが融合したBDT-TTPを成分とする分子性導体は ほぼ均一な積層構造を持つβ型の分子配列をとり、低温まで金属 状態を保持することが知られている [1]。この金属状態を不安定化 させ、超伝導体を探索するためにはバンド幅(W)を狭くする、また はオンサイトクーロン反発(U)を大きくする必要がある。我々はこれ までにバンド幅(W)を狭くするために、BDT-TTPの両末端にアル キル基を導入したTTP系ドナー分子に着目し、それらを成分とする 分子性導体の構造と物性に関する研究を行ってきた [2,3]。この研

DTDH-TTP (R = H, n = 2) DTDA-TTP (R = H, n = 3) DMDTDH-TTP (R = CH_3 , n = 2) DMDTDA-TTP (R = CH_3 , n = 3)

究結果から、アルキル基の立体障害に起因してバンド幅(W)がわずかに減少することを明らかにしているが、新規超伝導体の発見には至っていない。一方、山田、西川らは π 系を縮小させることでオンサイトクーロン反発(U)を増大させて、新たな超伝導体を見いだしている[4,5]。そこで今回我々は、 π 系を縮小した TTP 系ドナーDTDH-TTP および DTDA-TTP に着目し [6,7]、これらのドナー分子にメチル基を導入した新規 π 縮小型 TTP 系ドナー DMDTDH-TTP および DMDTDA-TTP を合成し、ラジカルカチオン塩の構造と物性について検討したので報告する。

酸トリメチルによりクロスカップリングさせることにより DMDTDH-TTP および DMDTDA-TTP をそれぞれ 5%, 7%の収率で得た。電解酸化法によりラジカルカチオン塩の作製を検討し、 (DMDTDA-TTP)₂X (X = PF₆, AsF₆, SbF₆)を黒色針状結晶として得た。これらの結晶を用いて結晶構造解析と電気伝導度の測定を行った。

【結果・考察】 (DMDTDA-TTP)₂X (X = PF₆, AsF₆, SbF₆) は互いに同型であり、三 斜晶系P1に属する。Fig. 1 に SbF₆塩の結 晶構造を示す。ドナー分子は一分子独立 で一般位置に存在する。一方、SbF6アニオ ンのSb原子は対称心上に位置している。よ って、この塩の組成は D:A = 2:1 である。ド ナー分子は head-to-tail 様式で b 軸方向に 積層してカラムを形成している。このカラム がa軸方向に配列し、ab面にB型の二次元 ドナー層を形成している。X 線結晶構造解 析の結果に基づいて DMDTDA-TTP 分子 の HOMO を計算したところ、TTF 骨格側に HOMO が大きく偏っていることがわかった。 HOMO の重なり積分値を計算すると、TTF 骨格が ring-over-bond 様式で有効に重なっ ているb2が23.7×10⁻³と比較的大きな重な り積分値を示したが、TTF 骨格のジチオー ル環が1つしか重なっていないb1は14.5× 10-3と b2 よりも小さな値を示した。これらの 値に基づいて二量化の度合いΔS/<S>を見 積もると 0.45 となり、この値は BDT-TTP 塩 に比べて2桁大きな値となっている。よって、 BDT-TTP 系導体よりも二量化が強くなって いることがわかる。

Fig. 2 に SbF₆塩のバンド構造と Fermi 面 を示す。強い二量化のため、バンドは大きく 分裂し 0.05 eV のギャップが生じている。 Femi 面は湾曲しており、擬一次元的な電 子系であると考えられる。(DMDTDA-TTP)₂X (X = PF₆, AsF₆, SbF₆)の抵抗率は いずれも室温から 150 K まではほとんど温 度に依存しないが、低温では半導体的に 振る舞う(Fig. 3)。当日は圧力下での伝導 性も報告する予定である。

【参考文献】

[1] Y. Misaki, Sci. Technol. Adv. Mater. 10, 024301 (2009). [2] 白旗 崇 他, 第7回分子科学討論会,

Fig. 1. Molecular packing of (DMDTDA-TTP)₂SbF₆ viewed (a) along the *b* axis and (b) along the molecular long axis. Crystal data: triclinic, $P\overline{1}$, a = 6.5313(7), b = 7.6095(8), c = 18.8267(16) Å, $\alpha = 88.179(7)$, $\beta = 90.207(8)$, $\gamma = 74.954(10)^\circ$, V = 903.08(16) Å³, R1 = 0.0902, wR2 = 0.1841, GOF = 0.956. Calculated overlap integrals: b1 = 14.5, b2 = 23.7, a = 2.76, p = 5.75, $q = 5.57 \times 10^{-3}$. The degree of dimerization is estimated by $\Delta S/\langle S \rangle = ||b2| - |b1||/(||b1| + |b2||/2)$ to be 0.45.

Fig. 2. Calculated energy band dispersion (left) and Fermi surfaces (right) of (DMDTDA-TTP)₂SbF₆.

Fig. 3. Temperature dependence of the resistivity of $(DMDTDA-TTP)_2X_6$. (X = PF₆, AsF₆, and SbF₆).

1B03 (2013). [3] 片山 翔伍 他, 第9回分子科学討論会, 2P046 (2015). [4] J.-i. Yamada *et al.*, J. Am. Chem. Soc. **123**, 4174 (2001). [5] H. Nishikawa *et al.*, J. Am. Chem. Soc. **124**, 730 (2002). [6] J.-i. Yamada *et al.*, Chem. Commun. 2517 (1996). [7] J.-i. Yamada *et al.*, Mol. Cryst. Liq. Cryst. **296**, 53 (1997).