1P055

パルスマグネトロンスパッタリングで生成した銅クラスター正イオンへ の無極性分子吸着反応における電子殻効果

¹東北大院理,²東北大理,³(株)アヤボ 〇岩崎航¹,梶山知孝²,小川雅人¹,戸名正英³,山本宏晃³,塚本恵三³, 中野元善¹,大下慶次郎¹,美齊津文典¹

Electron shell effects in adsorption reactions of nonpolar molecules on copper cluster cations formed by high power impulse magnetron sputtering

•W. Iwasaki¹, T. Kajiyama², M. Ogawa¹, M. Tona³, H. Yamamoto³, K. Tsukamoto³,

M. Nakano¹, K. Ohshimo¹, F. Misaizu¹ ¹ Graduate School of Science, Tohoku University ² Faculty of Science, Tohoku University, ³Ayabo

[Abstract]

An atomic cluster is an intermediate phase between atoms and bulk phases. Clusters have size-dependent properties which are different from bulk phase. Cluster ion sources over a wide size range with high intensity are desired to investigate the size-dependent properties of the clusters. For metal clusters, in addition to the source with direct current magnetron sputtering (DCMS) [1], a cluster source (nanojima®) with sputtering performed by pulsed discharges (High power impulse magnetron sputtering, HiPIMS) was developed recently [2]. In this study, we have observed gas-phase reactions of copper cluster cations, Cu_n^+ ($n \le 60$) which were formed by the HiPIMS cluster ion source, with non-polar molecules (O₂, N₂, CO₂) to investigate the size-dependent reactivity. The adsorption reactivity of Cu_n^+ ($n \le 60$) with O₂ was found to be low at n = 15, 21, 41, and 49, whereas the reactivities with N₂ and CO₂ were low at n = 15 and 41.We discussed this result in terms of the electron shell characters of the clusters in addition to their geometries.

【序】

金属クラスターは数個から数百個の金属原子からなる小集団で、気相と凝縮相の中間に位置する。そのため凝縮相では見られない物理的・化学的性質を持ち、さらに構成原子数(クラスターサイズ)に依存した構造、反応性を持つ。なかでも、その特異的な反応性から触媒、半導体などへの応用が期待されている。このような種々の性質のサイズ依存性を調べるために、高強度かつ様々なサイズのクラスターを生成できるクラスターイオン源が求められている。そこで本研究では、クラスター生成法として高出力インパルスマグネトロンスパッタリング法(HiPIMS)を用いたクラスターイオン源(nanojima®)により銅クラスター正イオン Cu_n*を生成し、無極性気体分子(O₂, N₂, CO₂)との吸着反応実験を行った。生成したイオン種は飛行時間型質量分析計(TOF-MS)を用いて検出し、各サイズの反応性を評価した。

【方法 】

実験装置は金属クラスターイオン源と TOF-MS からなる。HiPIMS により生成した 銅の蒸気は、液体窒素により 100 K に冷却された成長セル内で凝集して銅クラスター 正イオンへと成長し、TOF-MS で質量選別して検出される。スパッタガスとして 300 -500 sccm の Ar ガスを用いた。成長セルを通過した Cu_n⁺に、O₂, N₂, CO₂ を反応させ た。各サイズのクラスターイオンと気体分子との相対反応性 R_n を、

$$R_n = k_n[A]t = -ln\left(\frac{[\operatorname{Cu}_n^+]}{[\operatorname{Cu}_n^+] + [\operatorname{Cu}_nA^+]}\right)$$

として評価した(Aは気体分子、[Cu_n^+]は Cu_n^+ のイオン強度を示す。)。

【結果・考察】

 $Cu_n^+ \ge O_2$ を反応させた実験で得られた質量スペクトルを Figure 1 に示す。 O_2 を導入することで Cu_n^+ の強度が減少し $Cu_nO_2^+$ が観測された。他のサイズと比べ、 $Cu_{41}O_2^+$, $Cu_{49}O_2^+$ のイオンが極端に弱く観測された。この結果から R_n を求めたところ、他のサイズと比較して、n = 15, 21, 41, 49 で顕著に低い反応性を示した(Figure 2)。量子化学計算(M06-2X/def2-SVP)により Cu_{15}^+ の構造最適化を行ったところ、Figure 3 に示す安定構造が得られた。先行研究[3]によると銀クラスター Ag_{15}^+ でも同様の構造を持ち、 O_2 との反応性が低いことが示されている。また、銅は価電子数が1 であり、jellium モデルを仮定した際、 Cu_n^+ の電子構造は n = 21, 41 で閉殻となる。電子構造が閉殻となるこのようなサイズのクラスターイオンは O_2 分子との電子授受が生じにくく、低い反応性を示したと考えられる。

 N_2 , CO_2 との吸着反応についても同様 に R_n を求めたところ、どちらもn = 15, 41で顕著に低い値を示したが、n = 21, 49 に ついては反応性の低下は見られなかった。 この違いが生じる原因として、反応分子 の Cu_n^+ に対する結合様式が異なる可能性 が考えられる。

Figure 2: Plots of relative reactivities (R_n) of oxidation of Cu_n⁺ (n = 13-60). The R_n values were normalized at n = 13.

Figure 1: Typical TOF mass spectra of copper cluster cations formed in the ion source and those reacted with O₂. (a) $\Delta P = 0$ Pa, (b) $\Delta P = 7 \times 10^{-3}$ Pa

Figure 3: The most stable structures of Cu_{15}^+ calculated with M06-2X/def2-SVP level.

【参考文献】

- [1] H. Harberland et al. J. Vac. Sci. Technol. A, 10, 3266 (1992).
- [2] H. Tsunoyama et al. Chem. Lett., 42, 857 (2013).
- [3] Reber. AC et al. J. Phys. Conference Series, 438 (2013).