29.5eV真空紫外光をプローブ光とする時間分解光電子分光の開拓

¹京大院理

○東村智佳¹, 西谷純一¹, Christopher West¹, 鈴木俊法¹

Development of time-resolved photoelectron spectroscopy using 29.5eV vacuum ultraviolet probe pulse

•Chika Higashimura¹, Junichi Nishitani¹, Christopher West¹, Toshinori Suzuki¹ ¹ Department of Chemistry, Kyoto University, Japan

[Abstract] For elucidating complex chemical reaction dynamics, it is effective to observe non-adiabatic transitions entirely from the initial electronic state to the final products using time-resolved photoelectron spectroscopy (TRPES) with vacuum ultraviolet radiation. Although high harmonic generation (HHG) sources have high potential as light sources for TRPES, there are numerous obstacles to their use. In this study, we developed a simple and convenient setup for TRPES using SiC/Mg multi-layer mirrors to select one harmonic order without deterioration of the time-resolution. We succeeded in clear observation of the ultrafast electronic dephasing in pyrazine and photoisomerization of 1,3-cyclohexadiene. In addition, TRPES of liquid microjet, such as aniline or NaI solution, is in progress, and this demonstrate feasibility and great potential of TRPES using an HHG light source.

【序】複雑な化学反応ダイナミクスを明らかにするためには、非断熱遷移の全ての過程を観測することが非常に重要である。その方法として、高次高調波をプローブ光とする時間分解光電子分光が挙げられるが、それを実現するためには、時間分解能を低下させずに単一次数高調波を分離することが必要である。そこで我々は、波長800nmのパルスレーザーをKrガスに照射することで高次高調波を発生させ、SiC/Mg多層膜ミラーで19倍波のみを分離するシステムを開発した。これを利用し、気体ピラジンの電子励起状態からの緩和や、1,3-シクロヘキサジエン(CHD)から1,3,5-ヘキサトリエン(HT)への光異性化の観測に成功した。さらに、同システムの液体試料への応用にも取り組み、アニリンの電子励起状態や、水和電子の信号などを観測した。

【実験】実験装置の概略図を Fig. 1 に示す。チタンサファイアレーザーの基本波(ω) を石英レンズで集光して Kr ガスセルに導入し、高次高調波を発生させた後、SiC/Mg

Fig. 1. Schematic diagram of our experimental apparatus.

を放出させた。電子の運動エネルギー(PKE)分布の測定には、磁気ボトルを用いた飛 行時間型光電子エネルギー分析器を使用した。[1] 液相の実験では、試料溶液を直径 25μmの液体流として導入し、3ωもしくは 240nm のポンプ光と、19ωのプローブ光を 照射し、光電子を観測した。

【結果・考察】紙幅の都合により、気相のピラジンと CHD の実験結果についてのみ 詳述する。Fig.2 に、ピラジンから放出された光電子の PKE 分布の時間変化を二次元 カラーマップとして示す。20.0-21.0eV の範囲に S₁(n, π^*)とS₁→S₀ 内部転換により生じ た S₀ からの光イオン化、23.0-24.5eV には S₁(n, π^*)からの光イオン化の信号が存在す る。各状態の寿命は、S₁が 20ps、hot S₀ は長寿命で 100ps より大きいと見積もられ、 これは時間分解光電子イメージングによる先行研究[2]と矛盾しない。また、19.0-20.0eV の範囲に、S₀ から D₀(n⁻¹)と D₁(π^{-1})への光イオン化を示す 2 本のブリーチバン ドが存在する。

Fig. 3 (a) は、14eV のプローブパルスを用いて測定された CHD と HT の He(I)光電子 スペクトル、(b) はその差スペクトルである。[3] また、Fig. 3 (c) が本研究で得られ た光電子スペクトル、(d) がその差スペクトルである。HT の正の信号と CHD の負の 信号がそれぞれ存在し、この形状の特徴が先行研究と一致していることがわかる。 水溶液を試料とした実験では、アニリンの電子励起状態とその時間変化を観測した。 また、テトラブチルアンモニウムヨージド(TBAI)や NaI の水溶液中で生じた水和電子 の信号の観測にも成功した。当日は、これらの結果の詳細についても報告する。 本研究で開発した、高次高調波を光源とする TRPES の簡便なセットアップや測定・ 解析手法にさらに改良を加えることで、様々な水溶液中の化学反応ダイナミクスの解 明に繋がることが期待される。

0.8

0.6

0.6

0.2

0.0

-0.2

-04

-0.6

-0.8

1.0

Fig. 2. Difference PKE spectrum for pyrazine vapor as a function of the pump-probe delay time.

Fig. 3. (a) He(I) photoelectron spectra of CHD and HT convoluted with our energy resolution of 0.5 eV. (b) Difference spectrum of the spectra shown in (a). (c) Photoelectron spectra observed at the delay times of -10 and 2 ps. (d) Difference spectrum (Solid) and the photoelectron spectrum at -10 ps (dashed) in the present experiment.

【参考文献】

- [1] J. Nishitani et al. Chem. Phys. Lett., 684, 397 (2017).
- [2] T. Horio et al. J. Chem. Phys. 145, 044306 (2016).
- [3] S. Adachi et al. J. Phys. Chem. Lett. 6 (3), 343 (2015).